Generation and Optimization of High Quality Multi-GeV Electron Beams in Plasma Wakefield Accelerators PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Generation and Optimization of High Quality Multi-GeV Electron Beams in Plasma Wakefield Accelerators PDF full book. Access full book title Generation and Optimization of High Quality Multi-GeV Electron Beams in Plasma Wakefield Accelerators by Thamine Dalichaouch. Download full books in PDF and EPUB format.

Generation and Optimization of High Quality Multi-GeV Electron Beams in Plasma Wakefield Accelerators

Generation and Optimization of High Quality Multi-GeV Electron Beams in Plasma Wakefield Accelerators PDF Author: Thamine Dalichaouch
Publisher:
ISBN:
Category :
Languages : en
Pages : 206

Book Description
In this dissertation, a new method for producing ultra-bright electron beams in nonlinear plasma wave wakes driven by an electron beam driver is explored using particle-in-cell simulations and analytic theory. In order to understand this process an accurate description of a nonlinear wakefield is required. These nonlinear wakefields are excited by intense particle beams or lasers pushing plasma electrons radially outward, creating an ion bubble surrounded by a sheath of electrons characterized by the source term $S \equiv -\frac{1}{en_p}(\rho-J_z/c)$, where $e$ is the electron charge, $n_p$ is the plasma number density, $\rho$ is the charge density, and $J_z$ is the axial current density. Previously, the sheath source term was described phenomenologically with a positive-definite function thereby resulting in a positive definite wake potential. In reality, the wake potential is negative at the rear of the ion column, which is important for self-injection and accurate beam loading models. To account for this, in the first part of this dissertation a multi-sheath model in which the source term, $S$, of the plasma wake can be negative in regions outside the ion bubble is introduced. Using this model, a new expression for the wake potential and a modified differential equation for the bubble radius is obtained. Numerical results obtained from these equations are validated against particle-in-cell simulations for unloaded and loaded wakes. The new model provides accurate predictions of the shape and duration of trailing bunch current profiles that flatten plasma wakefields. It is also used to design a trailing bunch for a desired longitudinally varying loaded wakefield. The multi-sheath model is also applied to beam loading in laser wakefields. Areas where the multi-sheath model can be improved for laser drivers in future work are discussed. In the second part of this dissertation, a new method of controllable injection to generate high quality electron bunches in the nonlinear blowout regime driven by electron beams is proposed and demonstrated using particle-in-cell simulations. Injection is facilitated by decreasing the wake phase velocity through focusing the drive beam spot size. Two regimes are examined. In the first, the spot size is focused according to the vacuum Courant-Snyder (CS) beta function while, in the second, it is self-focused by the plasma ion column. The effects of the driver intensity and vacuum CS parameters on the wake velocity and injected beam parameters are examined via theory and simulations. For plasma densities of $\sim 10^{19} ~\centi\meter^{-3}$, particle-in-cell (PIC) simulations demonstrate that peak normalized brightnesses $\gtrsim 10^{20}~\ampere/\meter^2/\rad^2$ can be obtained with projected energy spreads of $\lesssim 1\%$ within the middle section of the injected beam and with normalized slice emittances as low as $\sim 10 ~\nano\meter$. In the last part of the dissertation, a predictive model for injection using the self-evolving driver method in the plasma focusing regime is developed. The model is used to characterize how the wake evolution and final injected beam parameters scale with the driver parameters. Parameter scans of PIC simulations using different drivers are performed and compared with the model predictions. In particular, the dependence of the injected beam parameters with the diffraction length, energy, intensity, spot size, and duration of the driver is examined. It is found that injection and optimal beam loading can be simultaneously achieved. The multi-sheath model is also used to study the beam loading effects from the injected bunch in this case. PIC simulation results indicate that the injected beam can be efficiently accelerated to $18.27$ GeV with a projected energy spread of $ 0.49\%$ and peak normalized brightess of $B_n \sim 10^{20}~\ampere/\meter^2/\rad^2$ for a plasma density of $\sim 10^{19} ~\centi\meter^{-3}$.

Generation and Optimization of High Quality Multi-GeV Electron Beams in Plasma Wakefield Accelerators

Generation and Optimization of High Quality Multi-GeV Electron Beams in Plasma Wakefield Accelerators PDF Author: Thamine Dalichaouch
Publisher:
ISBN:
Category :
Languages : en
Pages : 206

Book Description
In this dissertation, a new method for producing ultra-bright electron beams in nonlinear plasma wave wakes driven by an electron beam driver is explored using particle-in-cell simulations and analytic theory. In order to understand this process an accurate description of a nonlinear wakefield is required. These nonlinear wakefields are excited by intense particle beams or lasers pushing plasma electrons radially outward, creating an ion bubble surrounded by a sheath of electrons characterized by the source term $S \equiv -\frac{1}{en_p}(\rho-J_z/c)$, where $e$ is the electron charge, $n_p$ is the plasma number density, $\rho$ is the charge density, and $J_z$ is the axial current density. Previously, the sheath source term was described phenomenologically with a positive-definite function thereby resulting in a positive definite wake potential. In reality, the wake potential is negative at the rear of the ion column, which is important for self-injection and accurate beam loading models. To account for this, in the first part of this dissertation a multi-sheath model in which the source term, $S$, of the plasma wake can be negative in regions outside the ion bubble is introduced. Using this model, a new expression for the wake potential and a modified differential equation for the bubble radius is obtained. Numerical results obtained from these equations are validated against particle-in-cell simulations for unloaded and loaded wakes. The new model provides accurate predictions of the shape and duration of trailing bunch current profiles that flatten plasma wakefields. It is also used to design a trailing bunch for a desired longitudinally varying loaded wakefield. The multi-sheath model is also applied to beam loading in laser wakefields. Areas where the multi-sheath model can be improved for laser drivers in future work are discussed. In the second part of this dissertation, a new method of controllable injection to generate high quality electron bunches in the nonlinear blowout regime driven by electron beams is proposed and demonstrated using particle-in-cell simulations. Injection is facilitated by decreasing the wake phase velocity through focusing the drive beam spot size. Two regimes are examined. In the first, the spot size is focused according to the vacuum Courant-Snyder (CS) beta function while, in the second, it is self-focused by the plasma ion column. The effects of the driver intensity and vacuum CS parameters on the wake velocity and injected beam parameters are examined via theory and simulations. For plasma densities of $\sim 10^{19} ~\centi\meter^{-3}$, particle-in-cell (PIC) simulations demonstrate that peak normalized brightnesses $\gtrsim 10^{20}~\ampere/\meter^2/\rad^2$ can be obtained with projected energy spreads of $\lesssim 1\%$ within the middle section of the injected beam and with normalized slice emittances as low as $\sim 10 ~\nano\meter$. In the last part of the dissertation, a predictive model for injection using the self-evolving driver method in the plasma focusing regime is developed. The model is used to characterize how the wake evolution and final injected beam parameters scale with the driver parameters. Parameter scans of PIC simulations using different drivers are performed and compared with the model predictions. In particular, the dependence of the injected beam parameters with the diffraction length, energy, intensity, spot size, and duration of the driver is examined. It is found that injection and optimal beam loading can be simultaneously achieved. The multi-sheath model is also used to study the beam loading effects from the injected bunch in this case. PIC simulation results indicate that the injected beam can be efficiently accelerated to $18.27$ GeV with a projected energy spread of $ 0.49\%$ and peak normalized brightess of $B_n \sim 10^{20}~\ampere/\meter^2/\rad^2$ for a plasma density of $\sim 10^{19} ~\centi\meter^{-3}$.

Control of Laser Plasma Based Accelerators Up to 1 GeV.

Control of Laser Plasma Based Accelerators Up to 1 GeV. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 181

Book Description
This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> ± 10 mrad) were realized by employing a slitless scheme. A scintillating screen (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 ?m diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 1018 W/cm2) over 3.3 centimeters of sufficiently low density (≃ 4.3 x 1018/cm3) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of ≃ 0.5 GeV by using a 225 ?m diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 1018W/cm2) were guided over 3.3 centimeters of low density (≃ 3.5 x 1018/cm3) plasma in this experiment. A statistical analysis of the CDG-LWFAs performance was carried out. By taking advantage of the high repetition rate experimental system, several thousands of shots were taken in a broad range of the laser and plasma parameters. An analysis program was developed to sort and select the data by specified parameters, and then to evaluate performance statistically. The analysis suggested that the generation of GeV-level beams comes from a highly unstable and regime. By having the plasma density slightly above the threshold density for self injection, (1) the longest dephasing length possible was provided, which led to the generation of high energy e-beams, and (2) the number of electrons injected into the wakefield was kept small, which led to the generation of high quality (low energy spread) e-beams by minimizing the beam loading effect on the wake. The analysis of the stable half-GeV beam regime showed the requirements for stable self injection and acceleration. A small change of discharge delay tdsc, and input energy Ein, significantly affected performance. The statistical analysis provided information for future optimization, and suggested possible schemes for improvement of the stability and higher quality beam generation. A CDG-LWFA is envisioned as a construction block for the next generation accelerator, enabling significant cost and size reductions.

Phase Space Dynamics in Plasma Based Wakefield Acceleration

Phase Space Dynamics in Plasma Based Wakefield Acceleration PDF Author: Xinlu Xu
Publisher: Springer Nature
ISBN: 9811523819
Category : Science
Languages : en
Pages : 138

Book Description
This book explores several key issues in beam phase space dynamics in plasma-based wakefield accelerators. It reveals the phase space dynamics of ionization-based injection methods by identifying two key phase mixing processes. Subsequently, the book proposes a two-color laser ionization injection scheme for generating high-quality beams, and assesses it using particle-in-cell (PIC) simulations. To eliminate emittance growth when the beam propagates between plasma accelerators and traditional accelerator components, a method using longitudinally tailored plasma structures as phase space matching components is proposed. Based on the aspects above, a preliminary design study on X-ray free-electron lasers driven by plasma accelerators is presented. Lastly, an important type of numerical noise—the numerical Cherenkov instabilities in particle-in-cell codes—is systematically studied.

Computational Studies and Optimization of Wakefield Accelerators

Computational Studies and Optimization of Wakefield Accelerators PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Laser- and particle beam-driven plasma wakefield accelerators produce accelerating fields thousands of times higher than radio-frequency accelerators, offering compactness and ultrafast bunches to extend the frontiers of high energy physics and to enable laboratory-scale radiation sources. Large-scale kinetic simulations provide essential understanding of accelerator physics to advance beam performance and stability and show and predict the physics behind recent demonstration of narrow energy spread bunches. Benchmarking between codes is establishing validity of the models used and, by testing new reduced models, is extending the reach of simulations to cover upcoming meter-scale multi-GeV experiments. This includes new models that exploit Lorentz boosted simulation frames to speed calculations. Simulations of experiments showed that recently demonstrated plasma gradient injection of electrons can be used as an injector to increase beam quality by orders of magnitude. Simulations are now also modeling accelerator stages of tens of GeV, staging of modules, and new positron sources to design next-generation experiments and to use in applications in high energy physics and light sources.

Studies of Proton Driven Plasma Wakefield Acceleration

Studies of Proton Driven Plasma Wakefield Acceleration PDF Author: Yangmei Li
Publisher: Springer
ISBN: 9783030501150
Category : Science
Languages : en
Pages : 125

Book Description
This thesis focuses on a cutting-edge area of research, which is aligned with CERN's mainstream research, the "AWAKE" project, dedicated to proving the capability of accelerating particles to the energy frontier by the high energy proton beam. The author participated in this project and has advanced the plasma wakefield theory and modelling significantly, especially concerning future plasma acceleration based collider design. The thesis addresses electron beam acceleration to high energy whilst preserving its high quality driven by a single short proton bunch in hollow plasma. It also demonstrates stable deceleration of multiple proton bunches in a nonlinear regime with strong resonant wakefield excitation in hollow plasma, and generation of high energy and high quality electron or positron bunches. Further work includes the assessment of transverse instabilities induced by misaligned beams in hollow plasma and enhancement of the wakefield amplitude driven by a self-modulated long proton bunch with a tapered plasma. This work has major potential to impact the next generation of linear colliders and also in the long-term may help develop compact accelerators for use in industrial and medical facilities.

Scaled Simulations of a 10 GeV Accelerator

Scaled Simulations of a 10 GeV Accelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Laser plasma accelerators are able to produce high quality electron beams from 1 MeV to 1 GeV. The next generation of plasma accelerator experiments will likely use a multi-stage approach where a high quality electron bunch is first produced and then injected into an accelerating structure. In this paper we present scaled particle-in-cell simulations of a 10 GeV stage in the quasi-linear regime. We show that physical parameters can be scaled to be able to perform these simulations at reasonable computational cost. Beam loading properties and electron bunch energy gain are calculated. A range of parameter regimes are studied to optimize the quality of the electron bunch at the output of the stage.

GeV Electron Beams from a Cm-scale Accelerator

GeV Electron Beams from a Cm-scale Accelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
GeV electron accelerators are essential to synchrotron radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radio frequency based accelerators are limited to relatively low accelerating fields (10-50 MV/m) and hence require tens to hundreds of meters to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometers to generate particle energies of interest to the frontiers of high-energy physics. Laser wakefield accelerators (LWFA) in which particles are accelerated by the field of a plasma wave driven by an intense laser pulse produce electric fields several orders of magnitude stronger (10-100 GV/m) and so offer the potential of very compact devices. However, until now it has not been possible to maintain the required laser intensity, and hence acceleration, over the several centimeters needed to reach GeV energies. For this reason laser-driven accelerators have to date been limited to the 100 MeV scale. Contrary to predictions that PW-class lasers would be needed to reach GeV energies, here we demonstrate production of a high-quality electron beam with 1 GeV energy by channeling a 40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide. We anticipate that laser-plasma accelerators based on capillary discharge waveguides will have a major impact on the development of future femtosecond radiation sources such as x-ray free electron lasers and become a standard building block for next generation high-energy accelerators.

Generation of High-quality Electron Beams from a Laser-based Advanced Accelerator*Supported by 973 National Basic Research Program of China (2013CBA01504) and Natural Science Foundation of China NSFC (11121504, 11334013, 11175119, 11374209).

Generation of High-quality Electron Beams from a Laser-based Advanced Accelerator*Supported by 973 National Basic Research Program of China (2013CBA01504) and Natural Science Foundation of China NSFC (11121504, 11334013, 11175119, 11374209). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract: At Shanghai Jiao Tong University (SJTU) we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams of reasonable quality are generated using 20–40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

GeV Electron Beams from Cm-scale Channel Guided Laser Wakefieldaccelerator

GeV Electron Beams from Cm-scale Channel Guided Laser Wakefieldaccelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Laser-wakefield accelerators (LWFA) can produce electricfields of order 10-100 GV/m suitable for acceleration of electrons torelativistic energies. The wakefields are excited by a relativisticallyintense laser pulse propagating through a plasma and have a phasevelocity determined by the group velocity of the light pulse. Twoimportant effects that can limit the acceleration distanceand hence thenet energy gain obtained by an electron are diffraction of the drivelaser pulse and particle-wake dephasing. Diffraction of a focusedultra-short laser pulse can be overcome by using preformed plasmachannels. The dephasing limit can be increased by operating at a lowerplasma density, since this results in an increase in the laser groupvelocity. Here we present detailed results on the generation of GeV-classelectron beams using an intense femtosecond laser beamand a 3.3 cm longpreformed discharge-based plasma channel [W.P. Leemans et al., NaturePhysics 2, 696-699 (2006)]. The use of a discharge-based waveguidepermitted operation at an order ofmagnitude lower density and 15 timeslonger distance than in previous experiments that relied on laserpreformed plasma channels. Laser pulses with peak power ranging from10-50 TW were guided over more than 20 Rayleigh ranges and high-qualityelectron beams with energy up to 1 GeV were obtained by channelling a 40TW peak power laser pulse. The dependence of the electron beamcharacteristics on capillary properties, plasma density, and laserparameters are discussed.

Multi-gev High Performance Accelerators And Related Technology: Proceedings Of The Xvi Rcnp Osaka International Symposium

Multi-gev High Performance Accelerators And Related Technology: Proceedings Of The Xvi Rcnp Osaka International Symposium PDF Author: Kichiji Hatanaka
Publisher: World Scientific
ISBN: 981454583X
Category :
Languages : en
Pages : 318

Book Description
This volume covers the field of circular accelerators and related technology for the sub-GeV to multi-GeV energy region from the viewpoint of realization of high performance, i.e., performance and perspectives of operating multi-GeV accelerators, future projects in the multi-GeV energy region, lattice designs and beam dynamics, electron cooling and stochastic cooling, injection and extraction, beam diagnostics, superconducting and normal magnets, magnet power supplies, RF systems, and internal targets. The contributors include leading accelerator physicists from around the world.