Author: Naveen Kumar
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842651605
Category : Computers
Languages : en
Pages : 178
Book Description
Beginning with the formula used to derive Euler dynamical equations, this book discusses Eulerian, Lagrangian and Hamiltonian approaches to generalized motion on rigid body in sequential chapters, emphasizing how one approach was extended and simplified by other one. The last chapter deals with canonical transformations from one phase space to other one, and invariance of certain properties including Poisson beackerts.
Generalized Motion of Rigid Body
Author: Naveen Kumar
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842651605
Category : Computers
Languages : en
Pages : 178
Book Description
Beginning with the formula used to derive Euler dynamical equations, this book discusses Eulerian, Lagrangian and Hamiltonian approaches to generalized motion on rigid body in sequential chapters, emphasizing how one approach was extended and simplified by other one. The last chapter deals with canonical transformations from one phase space to other one, and invariance of certain properties including Poisson beackerts.
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842651605
Category : Computers
Languages : en
Pages : 178
Book Description
Beginning with the formula used to derive Euler dynamical equations, this book discusses Eulerian, Lagrangian and Hamiltonian approaches to generalized motion on rigid body in sequential chapters, emphasizing how one approach was extended and simplified by other one. The last chapter deals with canonical transformations from one phase space to other one, and invariance of certain properties including Poisson beackerts.
The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point
Author: Eugene Leimanis
Publisher: Springer Science & Business Media
ISBN: 3642884121
Category : Science
Languages : en
Pages : 352
Book Description
In the theory of motion of several coupled rigid bodies about a fixed point one can distinguish three basic ramifications. 1. The first, the so-called classical direction of investigations, is concerned with particular cases of integrability ot the equations of motion of a single rigid body about a fixed point,1 and with their geo metrical interpretation. This path of thought was predominant until the beginning of the 20th century and its most illustrious represen tatives are L. EULER (1707-1783), J L. LAGRANGE (1736-1813), L. POINSOT (1777-1859), S. V. KOVALEVSKAYA (1850-1891), and others. Chapter I of the present monograph intends to reflect this branch of investigations. For collateral reading on the general questions dealt with in this chapter the reader is referred to the following textbooks and reports: A. DOMOGAROV [1J, F. KLEIN and A. SOMMERFELD [11, 1 , 1 J, A. G. 2 3 GREENHILL [10J, A. GRAY [1J, R. GRAMMEL [4 J, E. J. ROUTH [21' 2 , 1 2 31' 32J, J. B. SCARBOROUGH [1J, and V. V. GOLUBEV [1, 2J.
Publisher: Springer Science & Business Media
ISBN: 3642884121
Category : Science
Languages : en
Pages : 352
Book Description
In the theory of motion of several coupled rigid bodies about a fixed point one can distinguish three basic ramifications. 1. The first, the so-called classical direction of investigations, is concerned with particular cases of integrability ot the equations of motion of a single rigid body about a fixed point,1 and with their geo metrical interpretation. This path of thought was predominant until the beginning of the 20th century and its most illustrious represen tatives are L. EULER (1707-1783), J L. LAGRANGE (1736-1813), L. POINSOT (1777-1859), S. V. KOVALEVSKAYA (1850-1891), and others. Chapter I of the present monograph intends to reflect this branch of investigations. For collateral reading on the general questions dealt with in this chapter the reader is referred to the following textbooks and reports: A. DOMOGAROV [1J, F. KLEIN and A. SOMMERFELD [11, 1 , 1 J, A. G. 2 3 GREENHILL [10J, A. GRAY [1J, R. GRAMMEL [4 J, E. J. ROUTH [21' 2 , 1 2 31' 32J, J. B. SCARBOROUGH [1J, and V. V. GOLUBEV [1, 2J.
Elements of Newtonian Mechanics
Author: Jens M. Knudsen
Publisher: Springer Science & Business Media
ISBN: 3642976735
Category : Science
Languages : en
Pages : 442
Book Description
In the second edition, a number of misprints that appeared in the first edition have been corrected. In addition to this, we have made improvements based on the experience gathered in the use of the first English edition of the book in the introductory course in physics at the University of Copenhagen. A chapter introducing nonlinear dynamics has been added. The purpose of this chapter is to provide supplementary reading for the students who are interested in this area of active research, where Newtonian mechanics plays an essential role. The students who wish to dig deeper, should consult texts dedicated to the study of nonlinear dynamical systems and chaos. The literature list at the end of this book contains several references for the topic. The book still contains a one-semester (15 weeks) first university course on Newtonian mechanics. This necessarily introduces some constraints on the choice of topics and the level of mathematical sophistication expected from the reader. If one looks for discussions of technical issues, such as the physics behind various manifestations of friction, or the tensorial nature of the rotation vector, one will look in vain. The book contains what we feel are the essential aspects of Newtonian Mechanics. It is a pleasure again to thank Springer-Verlag and in particular Dr. H. J. KOisch and the staff at the Heidelberg office for helpfulness and professional collaboration.
Publisher: Springer Science & Business Media
ISBN: 3642976735
Category : Science
Languages : en
Pages : 442
Book Description
In the second edition, a number of misprints that appeared in the first edition have been corrected. In addition to this, we have made improvements based on the experience gathered in the use of the first English edition of the book in the introductory course in physics at the University of Copenhagen. A chapter introducing nonlinear dynamics has been added. The purpose of this chapter is to provide supplementary reading for the students who are interested in this area of active research, where Newtonian mechanics plays an essential role. The students who wish to dig deeper, should consult texts dedicated to the study of nonlinear dynamical systems and chaos. The literature list at the end of this book contains several references for the topic. The book still contains a one-semester (15 weeks) first university course on Newtonian mechanics. This necessarily introduces some constraints on the choice of topics and the level of mathematical sophistication expected from the reader. If one looks for discussions of technical issues, such as the physics behind various manifestations of friction, or the tensorial nature of the rotation vector, one will look in vain. The book contains what we feel are the essential aspects of Newtonian Mechanics. It is a pleasure again to thank Springer-Verlag and in particular Dr. H. J. KOisch and the staff at the Heidelberg office for helpfulness and professional collaboration.
Engineering Dynamics
Author: N. Jeremy Kasdin
Publisher: Princeton University Press
ISBN: 1400839076
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This textbook introduces undergraduate students to engineering dynamics using an innovative approach that is at once accessible and comprehensive. Combining the strengths of both beginner and advanced dynamics texts, this book has students solving dynamics problems from the very start and gradually guides them from the basics to increasingly more challenging topics without ever sacrificing rigor. Engineering Dynamics spans the full range of mechanics problems, from one-dimensional particle kinematics to three-dimensional rigid-body dynamics, including an introduction to Lagrange's and Kane's methods. It skillfully blends an easy-to-read, conversational style with careful attention to the physics and mathematics of engineering dynamics, and emphasizes the formal systematic notation students need to solve problems correctly and succeed in more advanced courses. This richly illustrated textbook features numerous real-world examples and problems, incorporating a wide range of difficulty; ample use of MATLAB for solving problems; helpful tutorials; suggestions for further reading; and detailed appendixes. Provides an accessible yet rigorous introduction to engineering dynamics Uses an explicit vector-based notation to facilitate understanding Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html
Publisher: Princeton University Press
ISBN: 1400839076
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This textbook introduces undergraduate students to engineering dynamics using an innovative approach that is at once accessible and comprehensive. Combining the strengths of both beginner and advanced dynamics texts, this book has students solving dynamics problems from the very start and gradually guides them from the basics to increasingly more challenging topics without ever sacrificing rigor. Engineering Dynamics spans the full range of mechanics problems, from one-dimensional particle kinematics to three-dimensional rigid-body dynamics, including an introduction to Lagrange's and Kane's methods. It skillfully blends an easy-to-read, conversational style with careful attention to the physics and mathematics of engineering dynamics, and emphasizes the formal systematic notation students need to solve problems correctly and succeed in more advanced courses. This richly illustrated textbook features numerous real-world examples and problems, incorporating a wide range of difficulty; ample use of MATLAB for solving problems; helpful tutorials; suggestions for further reading; and detailed appendixes. Provides an accessible yet rigorous introduction to engineering dynamics Uses an explicit vector-based notation to facilitate understanding Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html
Generalized Motion Of Rigid Body
Author: Naveen Kumar
Publisher:
ISBN: 9788173195242
Category : Physics
Languages : en
Pages : 156
Book Description
Publisher:
ISBN: 9788173195242
Category : Physics
Languages : en
Pages : 156
Book Description
Principles of Mechanics
Author: Salma Alrasheed
Publisher: Springer
ISBN: 3030151956
Category : Science
Languages : en
Pages : 179
Book Description
This open access textbook takes the reader step-by-step through the concepts of mechanics in a clear and detailed manner. Mechanics is considered to be the core of physics, where a deep understanding of the concepts is essential in understanding all branches of physics. Many proofs and examples are included to help the reader grasp the fundamentals fully, paving the way to deal with more advanced topics. After solving all of the examples, the reader will have gained a solid foundation in mechanics and the skills to apply the concepts in a variety of situations. The book is useful for undergraduate students majoring in physics and other science and engineering disciplines. It can also be used as a reference for more advanced levels.
Publisher: Springer
ISBN: 3030151956
Category : Science
Languages : en
Pages : 179
Book Description
This open access textbook takes the reader step-by-step through the concepts of mechanics in a clear and detailed manner. Mechanics is considered to be the core of physics, where a deep understanding of the concepts is essential in understanding all branches of physics. Many proofs and examples are included to help the reader grasp the fundamentals fully, paving the way to deal with more advanced topics. After solving all of the examples, the reader will have gained a solid foundation in mechanics and the skills to apply the concepts in a variety of situations. The book is useful for undergraduate students majoring in physics and other science and engineering disciplines. It can also be used as a reference for more advanced levels.
Rigid Body Kinematics
Author: Joaquim A. Batlle
Publisher: Cambridge University Press
ISBN: 1108479073
Category : Science
Languages : en
Pages : 297
Book Description
A rigorous analysis and description of general motion in mechanical systems, which includes over 400 figures illustrating every concept, and a large collection of useful exercises. Ideal for students studying mechanical engineering, and as a reference for graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 1108479073
Category : Science
Languages : en
Pages : 297
Book Description
A rigorous analysis and description of general motion in mechanical systems, which includes over 400 figures illustrating every concept, and a large collection of useful exercises. Ideal for students studying mechanical engineering, and as a reference for graduate students and researchers.
Principles of Engineering Mechanics
Author: Millard F. Beatty Jr.
Publisher: Springer Science & Business Media
ISBN: 1489972854
Category : Technology & Engineering
Languages : en
Pages : 413
Book Description
Separation of the elements of classical mechanics into kinematics and dynamics is an uncommon tutorial approach, but the author uses it to advantage in this two-volume set. Students gain a mastery of kinematics first – a solid foundation for the later study of the free-body formulation of the dynamics problem. A key objective of these volumes, which present a vector treatment of the principles of mechanics, is to help the student gain confidence in transforming problems into appropriate mathematical language that may be manipulated to give useful physical conclusions or specific numerical results. In the first volume, the elements of vector calculus and the matrix algebra are reviewed in appendices. Unusual mathematical topics, such as singularity functions and some elements of tensor analysis, are introduced within the text. A logical and systematic building of well-known kinematic concepts, theorems, and formulas, illustrated by examples and problems, is presented offering insights into both fundamentals and applications. Problems amplify the material and pave the way for advanced study of topics in mechanical design analysis, advanced kinematics of mechanisms and analytical dynamics, mechanical vibrations and controls, and continuum mechanics of solids and fluids. Volume I of Principles of Engineering Mechanics provides the basis for a stimulating and rewarding one-term course for advanced undergraduate and first-year graduate students specializing in mechanics, engineering science, engineering physics, applied mathematics, materials science, and mechanical, aerospace, and civil engineering. Professionals working in related fields of applied mathematics will find it a practical review and a quick reference for questions involving basic kinematics.
Publisher: Springer Science & Business Media
ISBN: 1489972854
Category : Technology & Engineering
Languages : en
Pages : 413
Book Description
Separation of the elements of classical mechanics into kinematics and dynamics is an uncommon tutorial approach, but the author uses it to advantage in this two-volume set. Students gain a mastery of kinematics first – a solid foundation for the later study of the free-body formulation of the dynamics problem. A key objective of these volumes, which present a vector treatment of the principles of mechanics, is to help the student gain confidence in transforming problems into appropriate mathematical language that may be manipulated to give useful physical conclusions or specific numerical results. In the first volume, the elements of vector calculus and the matrix algebra are reviewed in appendices. Unusual mathematical topics, such as singularity functions and some elements of tensor analysis, are introduced within the text. A logical and systematic building of well-known kinematic concepts, theorems, and formulas, illustrated by examples and problems, is presented offering insights into both fundamentals and applications. Problems amplify the material and pave the way for advanced study of topics in mechanical design analysis, advanced kinematics of mechanisms and analytical dynamics, mechanical vibrations and controls, and continuum mechanics of solids and fluids. Volume I of Principles of Engineering Mechanics provides the basis for a stimulating and rewarding one-term course for advanced undergraduate and first-year graduate students specializing in mechanics, engineering science, engineering physics, applied mathematics, materials science, and mechanical, aerospace, and civil engineering. Professionals working in related fields of applied mathematics will find it a practical review and a quick reference for questions involving basic kinematics.
Rigid Body Dynamics of Mechanisms
Author: Hubert Hahn
Publisher: Springer Science & Business Media
ISBN: 3662048310
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This monograph presents an introduction into basic mechanical aspects of mechatronic systems for students, researchers and engineers from industrial practice. An overview over the theoretical background of rigid body mechanics is given as well as a systematic approach for deriving and solving model equations of general rigid body mechanisms in the form of differential-algebraic equations (DAE). The objective of this book is to prepare the reader for being capable of efficiently handling and applying general purpose rigid body programs to complex mechanisms. The reader will be able to set up symbolic mathematical models of planar and spatial mechanisms in DAE-form for computer simulations, often required in dynamic analysis and in control design.
Publisher: Springer Science & Business Media
ISBN: 3662048310
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This monograph presents an introduction into basic mechanical aspects of mechatronic systems for students, researchers and engineers from industrial practice. An overview over the theoretical background of rigid body mechanics is given as well as a systematic approach for deriving and solving model equations of general rigid body mechanisms in the form of differential-algebraic equations (DAE). The objective of this book is to prepare the reader for being capable of efficiently handling and applying general purpose rigid body programs to complex mechanisms. The reader will be able to set up symbolic mathematical models of planar and spatial mechanisms in DAE-form for computer simulations, often required in dynamic analysis and in control design.
Rigid Body Dynamics
Author: Alexey Borisov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311054444X
Category : Science
Languages : en
Pages : 530
Book Description
This book provides an up-to-date overview of results in rigid body dynamics, including material concerned with the analysis of nonintegrability and chaotic behavior in various related problems. The wealth of topics covered makes it a practical reference for researchers and graduate students in mathematics, physics and mechanics. Contents Rigid Body Equations of Motion and Their Integration The Euler – Poisson Equations and Their Generalizations The Kirchhoff Equations and Related Problems of Rigid Body Dynamics Linear Integrals and Reduction Generalizations of Integrability Cases. Explicit Integration Periodic Solutions, Nonintegrability, and Transition to Chaos Appendix A : Derivation of the Kirchhoff, Poincaré – Zhukovskii, and Four-Dimensional Top Equations Appendix B: The Lie Algebra e(4) and Its Orbits Appendix C: Quaternion Equations and L-A Pair for the Generalized Goryachev – Chaplygin Top Appendix D: The Hess Case and Quantization of the Rotation Number Appendix E: Ferromagnetic Dynamics in a Magnetic Field Appendix F: The Landau – Lifshitz Equation, Discrete Systems, and the Neumann Problem Appendix G: Dynamics of Tops and Material Points on Spheres and Ellipsoids Appendix H: On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation Appendix I: The Hamiltonian Dynamics of Self-gravitating Fluid and Gas Ellipsoids
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311054444X
Category : Science
Languages : en
Pages : 530
Book Description
This book provides an up-to-date overview of results in rigid body dynamics, including material concerned with the analysis of nonintegrability and chaotic behavior in various related problems. The wealth of topics covered makes it a practical reference for researchers and graduate students in mathematics, physics and mechanics. Contents Rigid Body Equations of Motion and Their Integration The Euler – Poisson Equations and Their Generalizations The Kirchhoff Equations and Related Problems of Rigid Body Dynamics Linear Integrals and Reduction Generalizations of Integrability Cases. Explicit Integration Periodic Solutions, Nonintegrability, and Transition to Chaos Appendix A : Derivation of the Kirchhoff, Poincaré – Zhukovskii, and Four-Dimensional Top Equations Appendix B: The Lie Algebra e(4) and Its Orbits Appendix C: Quaternion Equations and L-A Pair for the Generalized Goryachev – Chaplygin Top Appendix D: The Hess Case and Quantization of the Rotation Number Appendix E: Ferromagnetic Dynamics in a Magnetic Field Appendix F: The Landau – Lifshitz Equation, Discrete Systems, and the Neumann Problem Appendix G: Dynamics of Tops and Material Points on Spheres and Ellipsoids Appendix H: On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation Appendix I: The Hamiltonian Dynamics of Self-gravitating Fluid and Gas Ellipsoids