Author: Susumu Mori
Publisher: Academic Press
ISBN: 0123984076
Category : Medical
Languages : en
Pages : 141
Book Description
The concepts behind diffusion tensor imaging (DTI) are commonly difficult to grasp, even for magnetic resonance physicists. To make matters worse, a many more complex higher-order methods have been proposed over the last few years to overcome the now well-known deficiencies of DTI. In Introduction to Diffusion Tensor Imaging: And Higher Order Models, these concepts are explained through extensive use of illustrations rather than equations to help readers gain a more intuitive understanding of the inner workings of these techniques. Emphasis is placed on the interpretation of DTI images and tractography results, the design of experiments, and the types of application studies that can be undertaken. Diffusion MRI is a very active field of research, and theories and techniques are constantly evolving. To make sense of this constantly shifting landscape, there is a need for a textbook that explains the concepts behind how these techniques work in a way that is easy and intuitive to understand—Introduction to Diffusion Tensor Imaging fills this gap. - Extensive use of illustrations to explain the concepts of diffusion tensor imaging and related methods - Easy to understand, even without a background in physics - Includes sections on image interpretation, experimental design, and applications - Up-to-date information on more recent higher-order models, which are increasingly being used for clinical applications
Introduction to Diffusion Tensor Imaging
Author: Susumu Mori
Publisher: Academic Press
ISBN: 0123984076
Category : Medical
Languages : en
Pages : 141
Book Description
The concepts behind diffusion tensor imaging (DTI) are commonly difficult to grasp, even for magnetic resonance physicists. To make matters worse, a many more complex higher-order methods have been proposed over the last few years to overcome the now well-known deficiencies of DTI. In Introduction to Diffusion Tensor Imaging: And Higher Order Models, these concepts are explained through extensive use of illustrations rather than equations to help readers gain a more intuitive understanding of the inner workings of these techniques. Emphasis is placed on the interpretation of DTI images and tractography results, the design of experiments, and the types of application studies that can be undertaken. Diffusion MRI is a very active field of research, and theories and techniques are constantly evolving. To make sense of this constantly shifting landscape, there is a need for a textbook that explains the concepts behind how these techniques work in a way that is easy and intuitive to understand—Introduction to Diffusion Tensor Imaging fills this gap. - Extensive use of illustrations to explain the concepts of diffusion tensor imaging and related methods - Easy to understand, even without a background in physics - Includes sections on image interpretation, experimental design, and applications - Up-to-date information on more recent higher-order models, which are increasingly being used for clinical applications
Publisher: Academic Press
ISBN: 0123984076
Category : Medical
Languages : en
Pages : 141
Book Description
The concepts behind diffusion tensor imaging (DTI) are commonly difficult to grasp, even for magnetic resonance physicists. To make matters worse, a many more complex higher-order methods have been proposed over the last few years to overcome the now well-known deficiencies of DTI. In Introduction to Diffusion Tensor Imaging: And Higher Order Models, these concepts are explained through extensive use of illustrations rather than equations to help readers gain a more intuitive understanding of the inner workings of these techniques. Emphasis is placed on the interpretation of DTI images and tractography results, the design of experiments, and the types of application studies that can be undertaken. Diffusion MRI is a very active field of research, and theories and techniques are constantly evolving. To make sense of this constantly shifting landscape, there is a need for a textbook that explains the concepts behind how these techniques work in a way that is easy and intuitive to understand—Introduction to Diffusion Tensor Imaging fills this gap. - Extensive use of illustrations to explain the concepts of diffusion tensor imaging and related methods - Easy to understand, even without a background in physics - Includes sections on image interpretation, experimental design, and applications - Up-to-date information on more recent higher-order models, which are increasingly being used for clinical applications
Visualization and Processing of Tensor Fields
Author: Joachim Weickert
Publisher: Springer Science & Business Media
ISBN: 3540312722
Category : Mathematics
Languages : en
Pages : 478
Book Description
Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.
Publisher: Springer Science & Business Media
ISBN: 3540312722
Category : Mathematics
Languages : en
Pages : 478
Book Description
Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.
Diffusion MRI
Author: Derek K Jones
Publisher: Oxford University Press
ISBN: 0199708703
Category : Science
Languages : en
Pages : 784
Book Description
Professor Derek Jones, a world authority on diffusion MRI, has assembled most of the world's leading scientists and clinicians developing and applying diffusion MRI to produce an authorship list that reads like a "Who's Who" of the field and an essential resource for those working with diffusion MRI. Destined to be a modern classic, this definitive and richly illustrated work covers all aspects of diffusion MRI from basic theory to clinical application. Oxford Clinical Neuroscience is a comprehensive, cross-searchable collection of resources offering quick and easy access to eleven of Oxford University Press's prestigious neuroscience texts. Joining Oxford Medicine Online these resources offer students, specialists and clinical researchers the best quality content in an easy-to-access format.
Publisher: Oxford University Press
ISBN: 0199708703
Category : Science
Languages : en
Pages : 784
Book Description
Professor Derek Jones, a world authority on diffusion MRI, has assembled most of the world's leading scientists and clinicians developing and applying diffusion MRI to produce an authorship list that reads like a "Who's Who" of the field and an essential resource for those working with diffusion MRI. Destined to be a modern classic, this definitive and richly illustrated work covers all aspects of diffusion MRI from basic theory to clinical application. Oxford Clinical Neuroscience is a comprehensive, cross-searchable collection of resources offering quick and easy access to eleven of Oxford University Press's prestigious neuroscience texts. Joining Oxford Medicine Online these resources offer students, specialists and clinical researchers the best quality content in an easy-to-access format.
Quantitative Magnetic Resonance Imaging
Author: Nicole Seiberlich
Publisher: Academic Press
ISBN: 0128170581
Category : Computers
Languages : en
Pages : 1094
Book Description
Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Publisher: Academic Press
ISBN: 0128170581
Category : Computers
Languages : en
Pages : 1094
Book Description
Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Diffusion NMR of Confined Systems
Author: Rustem Valiullin
Publisher: Royal Society of Chemistry
ISBN: 1782621903
Category : Science
Languages : en
Pages : 594
Book Description
With the increasing role of porous solids in conventional and newly emerging technologies, there is an urgent need for a deeper understanding of fluid behaviour confined to pore spaces of these materials especially with regard to their transport properties. From its early years, NMR has been recognized as a powerful experimental technique enabling direct access to this information. In the last two decades, the methodological development of different NMR techniques to assess dynamic properties of adsorbed ensembles has been progressed. This book will report on these recent advances and look at new broader applications in engineering and medicine. Having both academic and industrial relevance, this unique reference will be for specialists working in the research areas and for advanced graduate and postgraduate studies who want information on the versatility of diffusion NMR.
Publisher: Royal Society of Chemistry
ISBN: 1782621903
Category : Science
Languages : en
Pages : 594
Book Description
With the increasing role of porous solids in conventional and newly emerging technologies, there is an urgent need for a deeper understanding of fluid behaviour confined to pore spaces of these materials especially with regard to their transport properties. From its early years, NMR has been recognized as a powerful experimental technique enabling direct access to this information. In the last two decades, the methodological development of different NMR techniques to assess dynamic properties of adsorbed ensembles has been progressed. This book will report on these recent advances and look at new broader applications in engineering and medicine. Having both academic and industrial relevance, this unique reference will be for specialists working in the research areas and for advanced graduate and postgraduate studies who want information on the versatility of diffusion NMR.
Introduction to Functional Magnetic Resonance Imaging
Author: Richard B. Buxton
Publisher: Cambridge University Press
ISBN: 1139481304
Category : Medical
Languages : en
Pages : 479
Book Description
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
Publisher: Cambridge University Press
ISBN: 1139481304
Category : Medical
Languages : en
Pages : 479
Book Description
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
Anisotropy Across Fields and Scales
Author: Evren Özarslan
Publisher: Springer Nature
ISBN: 3030562158
Category : Algebra
Languages : en
Pages : 284
Book Description
This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.
Publisher: Springer Nature
ISBN: 3030562158
Category : Algebra
Languages : en
Pages : 284
Book Description
This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.
Surgical Neuro-Oncology
Author: Russell R. Lonser
Publisher:
ISBN: 0190696699
Category : Medical
Languages : en
Pages : 313
Book Description
Part of the Neurosurgery by Example series, this volume on surgical neuro-oncology presents exemplary cases in which renowned authors guide readers through the assessment and planning, decision making, surgical procedure, after care, and complication management of common and uncommon disorders. The cases explore a number of different types of nervous systems tumors, including glioblastoma, medulloblastoma, skull tumors, and more. Surgical Neuro-Oncology is appropriate for neurosurgeons who wish to learn more about this subspecialty, and those preparing for the American Board of Neurological Surgery oral examination.
Publisher:
ISBN: 0190696699
Category : Medical
Languages : en
Pages : 313
Book Description
Part of the Neurosurgery by Example series, this volume on surgical neuro-oncology presents exemplary cases in which renowned authors guide readers through the assessment and planning, decision making, surgical procedure, after care, and complication management of common and uncommon disorders. The cases explore a number of different types of nervous systems tumors, including glioblastoma, medulloblastoma, skull tumors, and more. Surgical Neuro-Oncology is appropriate for neurosurgeons who wish to learn more about this subspecialty, and those preparing for the American Board of Neurological Surgery oral examination.
Translational Dynamics and Magnetic Resonance
Author: Paul T. Callaghan
Publisher: OUP Oxford
ISBN: 0191621048
Category : Science
Languages : en
Pages : 710
Book Description
Taking the reader through the underlying principles of molecular translational dynamics, this book outlines the ways in which magnetic resonance, through the use of magnetic field gradients, can reveal those dynamics. The measurement of diffusion and flow, over different length and time scales, provides unique insight regarding fluid interactions with porous materials, as well as molecular organisation in soft matter and complex fluids. The book covers both time and frequency domain methodologies, as well as advances in scattering and diffraction methods, multidimensional exchange and correlation experiments and orientational correlation methods ideal for studying anisotropic environments. At the heart of these new methods resides the ubiquitous spin echo, a phenomenon whose discovery underpins nearly every major development in magnetic resonance methodology. Measuring molecular translational motion does not require high spectral resolution and so finds application in new NMR technologies concerned with 'outside the laboratory' applications, in geophysics and petroleum physics, in horticulture, in food technology, in security screening, and in environmental monitoring.
Publisher: OUP Oxford
ISBN: 0191621048
Category : Science
Languages : en
Pages : 710
Book Description
Taking the reader through the underlying principles of molecular translational dynamics, this book outlines the ways in which magnetic resonance, through the use of magnetic field gradients, can reveal those dynamics. The measurement of diffusion and flow, over different length and time scales, provides unique insight regarding fluid interactions with porous materials, as well as molecular organisation in soft matter and complex fluids. The book covers both time and frequency domain methodologies, as well as advances in scattering and diffraction methods, multidimensional exchange and correlation experiments and orientational correlation methods ideal for studying anisotropic environments. At the heart of these new methods resides the ubiquitous spin echo, a phenomenon whose discovery underpins nearly every major development in magnetic resonance methodology. Measuring molecular translational motion does not require high spectral resolution and so finds application in new NMR technologies concerned with 'outside the laboratory' applications, in geophysics and petroleum physics, in horticulture, in food technology, in security screening, and in environmental monitoring.
Computer Vision - ECCV 2004
Author: Tomas Pajdla
Publisher: Springer Science & Business Media
ISBN: 3540219811
Category : Computers
Languages : en
Pages : 647
Book Description
The four-volume set comprising LNCS volumes 3021/3022/3023/3024 constitutes the refereed proceedings of the 8th European Conference on Computer Vision, ECCV 2004, held in Prague, Czech Republic, in May 2004. The 190 revised papers presented were carefully reviewed and selected from a total of 555 papers submitted. The four books span the entire range of current issues in computer vision. The papers are organized in topical sections on tracking; feature-based object detection and recognition; geometry; texture; learning and recognition; information-based image processing; scale space, flow, and restoration; 2D shape detection and recognition; and 3D shape representation and reconstruction.
Publisher: Springer Science & Business Media
ISBN: 3540219811
Category : Computers
Languages : en
Pages : 647
Book Description
The four-volume set comprising LNCS volumes 3021/3022/3023/3024 constitutes the refereed proceedings of the 8th European Conference on Computer Vision, ECCV 2004, held in Prague, Czech Republic, in May 2004. The 190 revised papers presented were carefully reviewed and selected from a total of 555 papers submitted. The four books span the entire range of current issues in computer vision. The papers are organized in topical sections on tracking; feature-based object detection and recognition; geometry; texture; learning and recognition; information-based image processing; scale space, flow, and restoration; 2D shape detection and recognition; and 3D shape representation and reconstruction.