Author: Jose Natario
Publisher: Springer Science & Business Media
ISBN: 3642214525
Category : Science
Languages : en
Pages : 133
Book Description
“General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
General Relativity Without Calculus
Author: Jose Natario
Publisher: Springer Science & Business Media
ISBN: 3642214525
Category : Science
Languages : en
Pages : 133
Book Description
“General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
Publisher: Springer Science & Business Media
ISBN: 3642214525
Category : Science
Languages : en
Pages : 133
Book Description
“General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
General Relativity Without Calculus
Author: Jose Natario
Publisher: Springer
ISBN: 9783642270505
Category : Science
Languages : en
Pages : 0
Book Description
“General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
Publisher: Springer
ISBN: 9783642270505
Category : Science
Languages : en
Pages : 0
Book Description
“General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
General Relativity for Mathematicians
Author: R.K. Sachs
Publisher: Springer Science & Business Media
ISBN: 1461299039
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).
Publisher: Springer Science & Business Media
ISBN: 1461299039
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).
Differential Forms and the Geometry of General Relativity
Author: Tevian Dray
Publisher: CRC Press
ISBN: 1466510005
Category : Mathematics
Languages : en
Pages : 324
Book Description
Differential Forms and the Geometry of General Relativity provides readers with a coherent path to understanding relativity. Requiring little more than calculus and some linear algebra, it helps readers learn just enough differential geometry to grasp the basics of general relativity. The book contains two intertwined but distinct halves. Designed for advanced undergraduate or beginning graduate students in mathematics or physics, most of the text requires little more than familiarity with calculus and linear algebra. The first half presents an introduction to general relativity that describes some of the surprising implications of relativity without introducing more formalism than necessary. This nonstandard approach uses differential forms rather than tensor calculus and minimizes the use of "index gymnastics" as much as possible. The second half of the book takes a more detailed look at the mathematics of differential forms. It covers the theory behind the mathematics used in the first half by emphasizing a conceptual understanding instead of formal proofs. The book provides a language to describe curvature, the key geometric idea in general relativity.
Publisher: CRC Press
ISBN: 1466510005
Category : Mathematics
Languages : en
Pages : 324
Book Description
Differential Forms and the Geometry of General Relativity provides readers with a coherent path to understanding relativity. Requiring little more than calculus and some linear algebra, it helps readers learn just enough differential geometry to grasp the basics of general relativity. The book contains two intertwined but distinct halves. Designed for advanced undergraduate or beginning graduate students in mathematics or physics, most of the text requires little more than familiarity with calculus and linear algebra. The first half presents an introduction to general relativity that describes some of the surprising implications of relativity without introducing more formalism than necessary. This nonstandard approach uses differential forms rather than tensor calculus and minimizes the use of "index gymnastics" as much as possible. The second half of the book takes a more detailed look at the mathematics of differential forms. It covers the theory behind the mathematics used in the first half by emphasizing a conceptual understanding instead of formal proofs. The book provides a language to describe curvature, the key geometric idea in general relativity.
An Introduction to Mathematical Relativity
Author: José Natário
Publisher: Springer
ISBN: 9783030656850
Category : Mathematics
Languages : en
Pages : 186
Book Description
This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Técnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.
Publisher: Springer
ISBN: 9783030656850
Category : Mathematics
Languages : en
Pages : 186
Book Description
This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Técnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.
A Most Incomprehensible Thing
Author: Peter Collier
Publisher: Incomprehensible Books
ISBN: 0957389469
Category : Science
Languages : en
Pages : 276
Book Description
A straightforward, enjoyable guide to the mathematics of Einstein's relativity To really understand Einstein's theory of relativity – one of the cornerstones of modern physics – you have to get to grips with the underlying mathematics. This self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. With a user-friendly style, clear step-by-step mathematical derivations, many fully solved problems and numerous diagrams, this book provides a comprehensive introduction to a fascinating but complex subject. For those with minimal mathematical background, the first chapter gives a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes, relativistic cosmology and gravitational waves. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes. "I must observe that the theory of relativity resembles a building consisting of two separate stories, the special theory and the general theory. The special theory, on which the general theory rests, applies to all physical phenomena with the exception of gravitation; the general theory provides the law of gravitation and its relations tothe other forces of nature." – Albert Einstein, 1919 Understand even the basics of Einstein's amazing theory and the world will never seem the same again. Contents: Preface Introduction 1 Foundation mathematics 2 Newtonian mechanics 3 Special relativity 4 Introducing the manifold 5 Scalars, vectors, one-forms and tensors 6 More on curvature 7 General relativity 8 The Newtonian limit 9 The Schwarzschild metric 10 Schwarzschild black holes 11 Cosmology 12 Gravitational waves Appendix: The Riemann curvature tensor Bibliography Acknowledgements January 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.
Publisher: Incomprehensible Books
ISBN: 0957389469
Category : Science
Languages : en
Pages : 276
Book Description
A straightforward, enjoyable guide to the mathematics of Einstein's relativity To really understand Einstein's theory of relativity – one of the cornerstones of modern physics – you have to get to grips with the underlying mathematics. This self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. With a user-friendly style, clear step-by-step mathematical derivations, many fully solved problems and numerous diagrams, this book provides a comprehensive introduction to a fascinating but complex subject. For those with minimal mathematical background, the first chapter gives a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes, relativistic cosmology and gravitational waves. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes. "I must observe that the theory of relativity resembles a building consisting of two separate stories, the special theory and the general theory. The special theory, on which the general theory rests, applies to all physical phenomena with the exception of gravitation; the general theory provides the law of gravitation and its relations tothe other forces of nature." – Albert Einstein, 1919 Understand even the basics of Einstein's amazing theory and the world will never seem the same again. Contents: Preface Introduction 1 Foundation mathematics 2 Newtonian mechanics 3 Special relativity 4 Introducing the manifold 5 Scalars, vectors, one-forms and tensors 6 More on curvature 7 General relativity 8 The Newtonian limit 9 The Schwarzschild metric 10 Schwarzschild black holes 11 Cosmology 12 Gravitational waves Appendix: The Riemann curvature tensor Bibliography Acknowledgements January 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.
Einstein in Matrix Form
Author: Günter Ludyk
Publisher: Springer Science & Business Media
ISBN: 3642357989
Category : Science
Languages : en
Pages : 202
Book Description
This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einstein's theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the "Black Hole" phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.
Publisher: Springer Science & Business Media
ISBN: 3642357989
Category : Science
Languages : en
Pages : 202
Book Description
This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einstein's theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the "Black Hole" phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.
The Geometry of Spacetime
Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Mathematics of Relativity
Author: George Yuri Rainich
Publisher: Courier Corporation
ISBN: 0486783251
Category : Science
Languages : en
Pages : 193
Book Description
Based on the ideas of Einstein and Minkowski, this concise treatment is derived from the author's many years of teaching the mathematics of relativity at the University of Michigan. Geared toward advanced undergraduates and graduate students of physics, the text covers old physics, new geometry, special relativity, curved space, and general relativity. Beginning with a discussion of the inverse square law in terms of simple calculus, the treatment gradually introduces increasingly complicated situations and more sophisticated mathematical tools. Changes in fundamental concepts, which characterize relativity theory, and the refinements of mathematical technique are incorporated as necessary. The presentation thus offers an easier approach without sacrifice of rigor. Dover (2014) republication of the edition published by John Wiley & Sons, New York, 1950. See every Dover book in print at www.doverpublications.com
Publisher: Courier Corporation
ISBN: 0486783251
Category : Science
Languages : en
Pages : 193
Book Description
Based on the ideas of Einstein and Minkowski, this concise treatment is derived from the author's many years of teaching the mathematics of relativity at the University of Michigan. Geared toward advanced undergraduates and graduate students of physics, the text covers old physics, new geometry, special relativity, curved space, and general relativity. Beginning with a discussion of the inverse square law in terms of simple calculus, the treatment gradually introduces increasingly complicated situations and more sophisticated mathematical tools. Changes in fundamental concepts, which characterize relativity theory, and the refinements of mathematical technique are incorporated as necessary. The presentation thus offers an easier approach without sacrifice of rigor. Dover (2014) republication of the edition published by John Wiley & Sons, New York, 1950. See every Dover book in print at www.doverpublications.com
A Short Course in General Relativity
Author: James A. Foster
Publisher: Springer Science & Business Media
ISBN: 0387275835
Category : Science
Languages : en
Pages : 295
Book Description
Suitable for a one-semester course in general relativity for senior undergraduates or beginning graduate students, this text clarifies the mathematical aspects of Einstein's theory of relativity without sacrificing physical understanding.
Publisher: Springer Science & Business Media
ISBN: 0387275835
Category : Science
Languages : en
Pages : 295
Book Description
Suitable for a one-semester course in general relativity for senior undergraduates or beginning graduate students, this text clarifies the mathematical aspects of Einstein's theory of relativity without sacrificing physical understanding.