Author: Daniel W. Stroock
Publisher: Springer Nature
ISBN: 3031231228
Category : Mathematics
Languages : en
Pages : 152
Book Description
This text provides a concise introduction, suitable for a one-semester special topicscourse, to the remarkable properties of Gaussian measures on both finite and infinitedimensional spaces. It begins with a brief resumé of probabilistic results in which Fourieranalysis plays an essential role, and those results are then applied to derive a few basicfacts about Gaussian measures on finite dimensional spaces. In anticipation of the analysisof Gaussian measures on infinite dimensional spaces, particular attention is given to those/divproperties of Gaussian measures that are dimension independent, and Gaussian processesare constructed. The rest of the book is devoted to the study of Gaussian measures onBanach spaces. The perspective adopted is the one introduced by I. Segal and developedby L. Gross in which the Hilbert structure underlying the measure is emphasized.The contents of this book should be accessible to either undergraduate or graduate/divstudents who are interested in probability theory and have a solid background in Lebesgueintegration theory and a familiarity with basic functional analysis. Although the focus ison Gaussian measures, the book introduces its readers to techniques and ideas that haveapplications in other contexts.
Gaussian Measures in Finite and Infinite Dimensions
Author: Daniel W. Stroock
Publisher: Springer Nature
ISBN: 3031231228
Category : Mathematics
Languages : en
Pages : 152
Book Description
This text provides a concise introduction, suitable for a one-semester special topicscourse, to the remarkable properties of Gaussian measures on both finite and infinitedimensional spaces. It begins with a brief resumé of probabilistic results in which Fourieranalysis plays an essential role, and those results are then applied to derive a few basicfacts about Gaussian measures on finite dimensional spaces. In anticipation of the analysisof Gaussian measures on infinite dimensional spaces, particular attention is given to those/divproperties of Gaussian measures that are dimension independent, and Gaussian processesare constructed. The rest of the book is devoted to the study of Gaussian measures onBanach spaces. The perspective adopted is the one introduced by I. Segal and developedby L. Gross in which the Hilbert structure underlying the measure is emphasized.The contents of this book should be accessible to either undergraduate or graduate/divstudents who are interested in probability theory and have a solid background in Lebesgueintegration theory and a familiarity with basic functional analysis. Although the focus ison Gaussian measures, the book introduces its readers to techniques and ideas that haveapplications in other contexts.
Publisher: Springer Nature
ISBN: 3031231228
Category : Mathematics
Languages : en
Pages : 152
Book Description
This text provides a concise introduction, suitable for a one-semester special topicscourse, to the remarkable properties of Gaussian measures on both finite and infinitedimensional spaces. It begins with a brief resumé of probabilistic results in which Fourieranalysis plays an essential role, and those results are then applied to derive a few basicfacts about Gaussian measures on finite dimensional spaces. In anticipation of the analysisof Gaussian measures on infinite dimensional spaces, particular attention is given to those/divproperties of Gaussian measures that are dimension independent, and Gaussian processesare constructed. The rest of the book is devoted to the study of Gaussian measures onBanach spaces. The perspective adopted is the one introduced by I. Segal and developedby L. Gross in which the Hilbert structure underlying the measure is emphasized.The contents of this book should be accessible to either undergraduate or graduate/divstudents who are interested in probability theory and have a solid background in Lebesgueintegration theory and a familiarity with basic functional analysis. Although the focus ison Gaussian measures, the book introduces its readers to techniques and ideas that haveapplications in other contexts.
Gaussian Measures
Author: Vladimir I. Bogachev
Publisher: American Mathematical Soc.
ISBN: 147041869X
Category : Mathematics
Languages : en
Pages : 450
Book Description
This book gives a systematic exposition of the modern theory of Gaussian measures. It presents with complete and detailed proofs fundamental facts about finite and infinite dimensional Gaussian distributions. Covered topics include linear properties, convexity, linear and nonlinear transformations, and applications to Gaussian and diffusion processes. Suitable for use as a graduate text and/or a reference work, this volume contains many examples, exercises, and an extensive bibliography. It brings together many results that have not appeared previously in book form.
Publisher: American Mathematical Soc.
ISBN: 147041869X
Category : Mathematics
Languages : en
Pages : 450
Book Description
This book gives a systematic exposition of the modern theory of Gaussian measures. It presents with complete and detailed proofs fundamental facts about finite and infinite dimensional Gaussian distributions. Covered topics include linear properties, convexity, linear and nonlinear transformations, and applications to Gaussian and diffusion processes. Suitable for use as a graduate text and/or a reference work, this volume contains many examples, exercises, and an extensive bibliography. It brings together many results that have not appeared previously in book form.
Measures on Infinite Dimensional Spaces
Author: Yasuo Yamasaki
Publisher: World Scientific
ISBN: 9789971978525
Category : Science
Languages : en
Pages : 276
Book Description
This book is based on lectures given at Yale and Kyoto Universities and provides a self-contained detailed exposition of the following subjects: 1) The construction of infinite dimensional measures, 2) Invariance and quasi-invariance of measures under translations. This book furnishes an important tool for the analysis of physical systems with infinite degrees of freedom (such as field theory, statistical physics and field dynamics) by providing material on the foundations of these problems.
Publisher: World Scientific
ISBN: 9789971978525
Category : Science
Languages : en
Pages : 276
Book Description
This book is based on lectures given at Yale and Kyoto Universities and provides a self-contained detailed exposition of the following subjects: 1) The construction of infinite dimensional measures, 2) Invariance and quasi-invariance of measures under translations. This book furnishes an important tool for the analysis of physical systems with infinite degrees of freedom (such as field theory, statistical physics and field dynamics) by providing material on the foundations of these problems.
Mathematics of Quantization and Quantum Fields
Author: Jan Dereziński
Publisher: Cambridge University Press
ISBN: 1009290827
Category : Science
Languages : en
Pages : 689
Book Description
This 2013 book, now OA, offers a definitive review of mathematical aspects of quantization and quantum field theory.
Publisher: Cambridge University Press
ISBN: 1009290827
Category : Science
Languages : en
Pages : 689
Book Description
This 2013 book, now OA, offers a definitive review of mathematical aspects of quantization and quantum field theory.
Finite and Infinite Dimensional Analysis in Honor of Leonard Gross
Author: Hui-Hsiung Kuo
Publisher: American Mathematical Soc.
ISBN: 0821832026
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book contains the proceedings of the special session in honor of Leonard Gross held at the annual Joint Mathematics Meetings in New Orleans (LA). The speakers were specialists in a variety of fields, and many were Professor Gross's former Ph.D. students and their descendants. Papers in this volume present results from several areas of mathematics. They illustrate applications of powerful ideas that originated in Gross's work and permeate diverse fields. Topics include stochastic partial differential equations, white noise analysis, Brownian motion, Segal-Bargmann analysis, heat kernels, and some applications. The volume should be useful to graduate students and researchers. It provides perspective on current activity and on central ideas and techniques in the topics covered.
Publisher: American Mathematical Soc.
ISBN: 0821832026
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book contains the proceedings of the special session in honor of Leonard Gross held at the annual Joint Mathematics Meetings in New Orleans (LA). The speakers were specialists in a variety of fields, and many were Professor Gross's former Ph.D. students and their descendants. Papers in this volume present results from several areas of mathematics. They illustrate applications of powerful ideas that originated in Gross's work and permeate diverse fields. Topics include stochastic partial differential equations, white noise analysis, Brownian motion, Segal-Bargmann analysis, heat kernels, and some applications. The volume should be useful to graduate students and researchers. It provides perspective on current activity and on central ideas and techniques in the topics covered.
Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions
Author: N.V. Krylov
Publisher: Springer
ISBN: 3540481613
Category : Mathematics
Languages : en
Pages : 248
Book Description
Kolmogorov equations are second order parabolic equations with a finite or an infinite number of variables. They are deeply connected with stochastic differential equations in finite or infinite dimensional spaces. They arise in many fields as Mathematical Physics, Chemistry and Mathematical Finance. These equations can be studied both by probabilistic and by analytic methods, using such tools as Gaussian measures, Dirichlet Forms, and stochastic calculus. The following courses have been delivered: N.V. Krylov presented Kolmogorov equations coming from finite-dimensional equations, giving existence, uniqueness and regularity results. M. Röckner has presented an approach to Kolmogorov equations in infinite dimensions, based on an LP-analysis of the corresponding diffusion operators with respect to suitably chosen measures. J. Zabczyk started from classical results of L. Gross, on the heat equation in infinite dimension, and discussed some recent results.
Publisher: Springer
ISBN: 3540481613
Category : Mathematics
Languages : en
Pages : 248
Book Description
Kolmogorov equations are second order parabolic equations with a finite or an infinite number of variables. They are deeply connected with stochastic differential equations in finite or infinite dimensional spaces. They arise in many fields as Mathematical Physics, Chemistry and Mathematical Finance. These equations can be studied both by probabilistic and by analytic methods, using such tools as Gaussian measures, Dirichlet Forms, and stochastic calculus. The following courses have been delivered: N.V. Krylov presented Kolmogorov equations coming from finite-dimensional equations, giving existence, uniqueness and regularity results. M. Röckner has presented an approach to Kolmogorov equations in infinite dimensions, based on an LP-analysis of the corresponding diffusion operators with respect to suitably chosen measures. J. Zabczyk started from classical results of L. Gross, on the heat equation in infinite dimension, and discussed some recent results.
Handbook of the Geometry of Banach Spaces
Author: William B. Johnson
Publisher: Elsevier
ISBN: 9780444513052
Category : Banach spaces
Languages : en
Pages : 880
Book Description
The Handbook presents an overview of most aspects of modern Banach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banach space theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Publisher: Elsevier
ISBN: 9780444513052
Category : Banach spaces
Languages : en
Pages : 880
Book Description
The Handbook presents an overview of most aspects of modern Banach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banach space theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Real And Stochastic Analysis: Current Trends
Author: Malempati Madhusudana Rao
Publisher: World Scientific
ISBN: 9814551295
Category : Mathematics
Languages : en
Pages : 576
Book Description
This book presents the current status and research trends in Stochastic Analysis. Several new and emerging research areas are described in detail, highlighting the present outlook in Stochastic Analysis and its impact on abstract analysis. The book focuses on treating problems in areas that serve as a launching pad for continual research.
Publisher: World Scientific
ISBN: 9814551295
Category : Mathematics
Languages : en
Pages : 576
Book Description
This book presents the current status and research trends in Stochastic Analysis. Several new and emerging research areas are described in detail, highlighting the present outlook in Stochastic Analysis and its impact on abstract analysis. The book focuses on treating problems in areas that serve as a launching pad for continual research.
Integration on Infinite-Dimensional Surfaces and Its Applications
Author: A. Uglanov
Publisher: Springer Science & Business Media
ISBN: 9401596220
Category : Mathematics
Languages : en
Pages : 280
Book Description
It seems hard to believe, but mathematicians were not interested in integration problems on infinite-dimensional nonlinear structures up to 70s of our century. At least the author is not aware of any publication concerning this theme, although as early as 1967 L. Gross mentioned that the analysis on infinite dimensional manifolds is a field of research with rather rich opportunities in his classical work [2. This prediction was brilliantly confirmed afterwards, but we shall return to this later on. In those days the integration theory in infinite dimensional linear spaces was essentially developed in the heuristic works of RP. Feynman [1], I. M. Gelfand, A. M. Yaglom [1]). The articles of J. Eells [1], J. Eells and K. D. Elworthy [1], H. -H. Kuo [1], V. Goodman [1], where the contraction of a Gaussian measure on a hypersurface, in particular, was built and the divergence theorem (the Gauss-Ostrogradskii formula) was proved, appeared only in the beginning of the 70s. In this case a Gaussian specificity was essential and it was even pointed out in a later monograph of H. -H. Kuo [3] that the surface measure for the non-Gaussian case construction problem is not simple and has not yet been solved. A. V. Skorokhod [1] and the author [6,10] offered different approaches to such a construction. Some other approaches were offered later by Yu. L. Daletskii and B. D. Maryanin [1], O. G. Smolyanov [6], N. V.
Publisher: Springer Science & Business Media
ISBN: 9401596220
Category : Mathematics
Languages : en
Pages : 280
Book Description
It seems hard to believe, but mathematicians were not interested in integration problems on infinite-dimensional nonlinear structures up to 70s of our century. At least the author is not aware of any publication concerning this theme, although as early as 1967 L. Gross mentioned that the analysis on infinite dimensional manifolds is a field of research with rather rich opportunities in his classical work [2. This prediction was brilliantly confirmed afterwards, but we shall return to this later on. In those days the integration theory in infinite dimensional linear spaces was essentially developed in the heuristic works of RP. Feynman [1], I. M. Gelfand, A. M. Yaglom [1]). The articles of J. Eells [1], J. Eells and K. D. Elworthy [1], H. -H. Kuo [1], V. Goodman [1], where the contraction of a Gaussian measure on a hypersurface, in particular, was built and the divergence theorem (the Gauss-Ostrogradskii formula) was proved, appeared only in the beginning of the 70s. In this case a Gaussian specificity was essential and it was even pointed out in a later monograph of H. -H. Kuo [3] that the surface measure for the non-Gaussian case construction problem is not simple and has not yet been solved. A. V. Skorokhod [1] and the author [6,10] offered different approaches to such a construction. Some other approaches were offered later by Yu. L. Daletskii and B. D. Maryanin [1], O. G. Smolyanov [6], N. V.
An Introduction to Infinite-Dimensional Analysis
Author: Giuseppe Da Prato
Publisher: Springer Science & Business Media
ISBN: 3540290214
Category : Mathematics
Languages : en
Pages : 217
Book Description
Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.
Publisher: Springer Science & Business Media
ISBN: 3540290214
Category : Mathematics
Languages : en
Pages : 217
Book Description
Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.