Author: Jay Abramson
Publisher:
ISBN: 9789888407439
Category : Mathematics
Languages : en
Pages : 892
Book Description
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
College Algebra
Author: Jay Abramson
Publisher:
ISBN: 9789888407439
Category : Mathematics
Languages : en
Pages : 892
Book Description
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
Publisher:
ISBN: 9789888407439
Category : Mathematics
Languages : en
Pages : 892
Book Description
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
Multistep Integer-preserving Gaussian Elimination
Author: Erwin H. Bareiss
Publisher:
ISBN:
Category : Numerical analysis
Languages : en
Pages : 52
Book Description
Publisher:
ISBN:
Category : Numerical analysis
Languages : en
Pages : 52
Book Description
Algebra and Trigonometry
Author: Jay P. Abramson
Publisher:
ISBN: 9781938168376
Category : Algebra
Languages : en
Pages : 1564
Book Description
"The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs."--Page 1.
Publisher:
ISBN: 9781938168376
Category : Algebra
Languages : en
Pages : 1564
Book Description
"The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs."--Page 1.
Numerical Methods for Engineers and Scientists
Author: Joe D. Hoffman
Publisher: CRC Press
ISBN: 1482270609
Category : Mathematics
Languages : en
Pages : 840
Book Description
Emphasizing the finite difference approach for solving differential equations, the second edition of Numerical Methods for Engineers and Scientists presents a methodology for systematically constructing individual computer programs. Providing easy access to accurate solutions to complex scientific and engineering problems, each chapter begins with objectives, a discussion of a representative application, and an outline of special features, summing up with a list of tasks students should be able to complete after reading the chapter- perfect for use as a study guide or for review. The AIAA Journal calls the book "...a good, solid instructional text on the basic tools of numerical analysis."
Publisher: CRC Press
ISBN: 1482270609
Category : Mathematics
Languages : en
Pages : 840
Book Description
Emphasizing the finite difference approach for solving differential equations, the second edition of Numerical Methods for Engineers and Scientists presents a methodology for systematically constructing individual computer programs. Providing easy access to accurate solutions to complex scientific and engineering problems, each chapter begins with objectives, a discussion of a representative application, and an outline of special features, summing up with a list of tasks students should be able to complete after reading the chapter- perfect for use as a study guide or for review. The AIAA Journal calls the book "...a good, solid instructional text on the basic tools of numerical analysis."
An Introduction to Numerical Methods and Analysis
Author: James F. Epperson
Publisher: John Wiley & Sons
ISBN: 0470049634
Category : Mathematics
Languages : en
Pages : 592
Book Description
Praise for the First Edition ". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises." —Zentrablatt Math ". . . carefully structured with many detailed worked examples . . ." —The Mathematical Gazette ". . . an up-to-date and user-friendly account . . ." —Mathematika An Introduction to Numerical Methods and Analysis addresses the mathematics underlying approximation and scientific computing and successfully explains where approximation methods come from, why they sometimes work (or don't work), and when to use one of the many techniques that are available. Written in a style that emphasizes readability and usefulness for the numerical methods novice, the book begins with basic, elementary material and gradually builds up to more advanced topics. A selection of concepts required for the study of computational mathematics is introduced, and simple approximations using Taylor's Theorem are also treated in some depth. The text includes exercises that run the gamut from simple hand computations, to challenging derivations and minor proofs, to programming exercises. A greater emphasis on applied exercises as well as the cause and effect associated with numerical mathematics is featured throughout the book. An Introduction to Numerical Methods and Analysis is the ideal text for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.
Publisher: John Wiley & Sons
ISBN: 0470049634
Category : Mathematics
Languages : en
Pages : 592
Book Description
Praise for the First Edition ". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises." —Zentrablatt Math ". . . carefully structured with many detailed worked examples . . ." —The Mathematical Gazette ". . . an up-to-date and user-friendly account . . ." —Mathematika An Introduction to Numerical Methods and Analysis addresses the mathematics underlying approximation and scientific computing and successfully explains where approximation methods come from, why they sometimes work (or don't work), and when to use one of the many techniques that are available. Written in a style that emphasizes readability and usefulness for the numerical methods novice, the book begins with basic, elementary material and gradually builds up to more advanced topics. A selection of concepts required for the study of computational mathematics is introduced, and simple approximations using Taylor's Theorem are also treated in some depth. The text includes exercises that run the gamut from simple hand computations, to challenging derivations and minor proofs, to programming exercises. A greater emphasis on applied exercises as well as the cause and effect associated with numerical mathematics is featured throughout the book. An Introduction to Numerical Methods and Analysis is the ideal text for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.
Author: Gareth Williams
Publisher: Jones & Bartlett Learning
ISBN: 9780763757533
Category :
Languages : en
Pages : 568
Book Description
Linear Algebra with Applications, Sixth Edition is designed for the introductory course in linear algebra typically offered at the sophomore level. The new Sixth Edition is reorganized and arranged into three important parts. Part 1 introduces the basics, presenting the systems of linear equations, vectors in Rn, matrices, linear transformations, and determinants. Part 2 builds on this material to discuss general vector spaces, such as spaces of matrices and functions. Part 3 completes the course with many of the important ideas and methods in Numerical Linear Algebra, such as ill-conditioning, pivoting, and the LU decomposition. New applications include the role of linear algebra in the operation of the search engine Google and the global structure of the worldwide air transportation network have been added as a means of presenting real-world scenarios of the many functions of linear algebra in modern technology. Clear, Concise, Comprehensive - Linear Algebra with Applications, Sixth Edition continues to educate and enlighten students, providing a broad exposure to the many facets of the field.
Publisher: Jones & Bartlett Learning
ISBN: 9780763757533
Category :
Languages : en
Pages : 568
Book Description
Linear Algebra with Applications, Sixth Edition is designed for the introductory course in linear algebra typically offered at the sophomore level. The new Sixth Edition is reorganized and arranged into three important parts. Part 1 introduces the basics, presenting the systems of linear equations, vectors in Rn, matrices, linear transformations, and determinants. Part 2 builds on this material to discuss general vector spaces, such as spaces of matrices and functions. Part 3 completes the course with many of the important ideas and methods in Numerical Linear Algebra, such as ill-conditioning, pivoting, and the LU decomposition. New applications include the role of linear algebra in the operation of the search engine Google and the global structure of the worldwide air transportation network have been added as a means of presenting real-world scenarios of the many functions of linear algebra in modern technology. Clear, Concise, Comprehensive - Linear Algebra with Applications, Sixth Edition continues to educate and enlighten students, providing a broad exposure to the many facets of the field.
Matrix Algorithms
Author: G. W. Stewart
Publisher: SIAM
ISBN: 0898714141
Category : Mathematics
Languages : en
Pages : 476
Book Description
This volume is the first in a self-contained five-volume series devoted to matrix algorithms. It focuses on the computation of matrix decompositions--that is, the factorization of matrices into products of similar ones. The first two chapters provide the required background from mathematics and computer science needed to work effectively in matrix computations. The remaining chapters are devoted to the LU and QR decompositions--their computation and applications. The singular value decomposition is also treated, although algorithms for its computation will appear in the second volume of the series. The present volume contains 65 algorithms formally presented in pseudocode. Other volumes in the series will treat eigensystems, iterative methods, sparse matrices, and structured problems. The series is aimed at the nonspecialist who needs more than black-box proficiency with matrix computations. To give the series focus, the emphasis is on algorithms, their derivation, and their analysis. The reader is assumed to have a knowledge of elementary analysis and linear algebra and a reasonable amount of programming experience, typically that of the beginning graduate engineer or the undergraduate in an honors program. Strictly speaking, the individual volumes are not textbooks, although they are intended to teach, the guiding principle being that if something is worth explaining, it is worth explaining fully. This has necessarily restricted the scope of the series, but the selection of topics should give the reader a sound basis for further study.
Publisher: SIAM
ISBN: 0898714141
Category : Mathematics
Languages : en
Pages : 476
Book Description
This volume is the first in a self-contained five-volume series devoted to matrix algorithms. It focuses on the computation of matrix decompositions--that is, the factorization of matrices into products of similar ones. The first two chapters provide the required background from mathematics and computer science needed to work effectively in matrix computations. The remaining chapters are devoted to the LU and QR decompositions--their computation and applications. The singular value decomposition is also treated, although algorithms for its computation will appear in the second volume of the series. The present volume contains 65 algorithms formally presented in pseudocode. Other volumes in the series will treat eigensystems, iterative methods, sparse matrices, and structured problems. The series is aimed at the nonspecialist who needs more than black-box proficiency with matrix computations. To give the series focus, the emphasis is on algorithms, their derivation, and their analysis. The reader is assumed to have a knowledge of elementary analysis and linear algebra and a reasonable amount of programming experience, typically that of the beginning graduate engineer or the undergraduate in an honors program. Strictly speaking, the individual volumes are not textbooks, although they are intended to teach, the guiding principle being that if something is worth explaining, it is worth explaining fully. This has necessarily restricted the scope of the series, but the selection of topics should give the reader a sound basis for further study.
Numerical Methods for Scientists and Engineers
Author: Zekeriya Altaç
Publisher: CRC Press
ISBN: 1040132804
Category : Mathematics
Languages : en
Pages : 786
Book Description
Numerical Methods for Scientists and Engineers: With Pseudocodes is designed as a primary textbook for a one-semester course on Numerical Methods for sophomore or junior-level students. It covers the fundamental numerical methods required for scientists and engineers, as well as some advanced topics which are left to the discretion of instructors. The objective of the text is to provide readers with a strong theoretical background on numerical methods encountered in science and engineering, and to explain how to apply these methods to practical, real-world problems. Readers will also learn how to convert numerical algorithms into running computer codes. Features: Numerous pedagogic features including exercises, “pros and cons” boxes for each method discussed, and rigorous highlighting of key topics and ideas Suitable as a primary text for undergraduate courses in numerical methods, but also as a reference to working engineers A Pseudocode approach that makes the book accessible to those with different (or no) coding backgrounds, which does not tie instructors to one particular language over another A dedicated website featuring additional code examples, quizzes, exercises, discussions, and more: https://github.com/zaltac/NumMethodsWPseudoCodes A complete Solution Manual and PowerPoint Presentations are available (free of charge) to instructors at www.routledge.com/9781032754741
Publisher: CRC Press
ISBN: 1040132804
Category : Mathematics
Languages : en
Pages : 786
Book Description
Numerical Methods for Scientists and Engineers: With Pseudocodes is designed as a primary textbook for a one-semester course on Numerical Methods for sophomore or junior-level students. It covers the fundamental numerical methods required for scientists and engineers, as well as some advanced topics which are left to the discretion of instructors. The objective of the text is to provide readers with a strong theoretical background on numerical methods encountered in science and engineering, and to explain how to apply these methods to practical, real-world problems. Readers will also learn how to convert numerical algorithms into running computer codes. Features: Numerous pedagogic features including exercises, “pros and cons” boxes for each method discussed, and rigorous highlighting of key topics and ideas Suitable as a primary text for undergraduate courses in numerical methods, but also as a reference to working engineers A Pseudocode approach that makes the book accessible to those with different (or no) coding backgrounds, which does not tie instructors to one particular language over another A dedicated website featuring additional code examples, quizzes, exercises, discussions, and more: https://github.com/zaltac/NumMethodsWPseudoCodes A complete Solution Manual and PowerPoint Presentations are available (free of charge) to instructors at www.routledge.com/9781032754741
Fundamentals of Matrix Computations
Author: David S. Watkins
Publisher: John Wiley & Sons
ISBN: 0471461679
Category : Mathematics
Languages : en
Pages : 635
Book Description
A significantly revised and improved introduction to a critical aspect of scientific computation Matrix computations lie at the heart of most scientific computational tasks. For any scientist or engineer doing large-scale simulations, an understanding of the topic is essential. Fundamentals of Matrix Computations, Second Edition explains matrix computations and the accompanying theory clearly and in detail, along with useful insights. This Second Edition of a popular text has now been revised and improved to appeal to the needs of practicing scientists and graduate and advanced undergraduate students. New to this edition is the use of MATLAB for many of the exercises and examples, although the Fortran exercises in the First Edition have been kept for those who want to use them. This new edition includes: * Numerous examples and exercises on applications including electrical circuits, elasticity (mass-spring systems), and simple partial differential equations * Early introduction of the singular value decomposition * A new chapter on iterative methods, including the powerful preconditioned conjugate-gradient method for solving symmetric, positive definite systems * An introduction to new methods for solving large, sparse eigenvalue problems including the popular implicitly-restarted Arnoldi and Jacobi-Davidson methods With in-depth discussions of such other topics as modern componentwise error analysis, reorthogonalization, and rank-one updates of the QR decomposition, Fundamentals of Matrix Computations, Second Edition will prove to be a versatile companion to novice and practicing mathematicians who seek mastery of matrix computation.
Publisher: John Wiley & Sons
ISBN: 0471461679
Category : Mathematics
Languages : en
Pages : 635
Book Description
A significantly revised and improved introduction to a critical aspect of scientific computation Matrix computations lie at the heart of most scientific computational tasks. For any scientist or engineer doing large-scale simulations, an understanding of the topic is essential. Fundamentals of Matrix Computations, Second Edition explains matrix computations and the accompanying theory clearly and in detail, along with useful insights. This Second Edition of a popular text has now been revised and improved to appeal to the needs of practicing scientists and graduate and advanced undergraduate students. New to this edition is the use of MATLAB for many of the exercises and examples, although the Fortran exercises in the First Edition have been kept for those who want to use them. This new edition includes: * Numerous examples and exercises on applications including electrical circuits, elasticity (mass-spring systems), and simple partial differential equations * Early introduction of the singular value decomposition * A new chapter on iterative methods, including the powerful preconditioned conjugate-gradient method for solving symmetric, positive definite systems * An introduction to new methods for solving large, sparse eigenvalue problems including the popular implicitly-restarted Arnoldi and Jacobi-Davidson methods With in-depth discussions of such other topics as modern componentwise error analysis, reorthogonalization, and rank-one updates of the QR decomposition, Fundamentals of Matrix Computations, Second Edition will prove to be a versatile companion to novice and practicing mathematicians who seek mastery of matrix computation.
The Impact of Vector and Parallel Architectures on the Gaussian Elimination Algorithm
Author: Yves Robert
Publisher: Manchester University Press
ISBN: 9780719033650
Category : Computers
Languages : en
Pages : 216
Book Description
Mathematics of Computing -- Parallelism.
Publisher: Manchester University Press
ISBN: 9780719033650
Category : Computers
Languages : en
Pages : 216
Book Description
Mathematics of Computing -- Parallelism.