Gas exchange, evapotranspiration efficiency, morphophysiology and productivity of cowpeas under water deficit PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Gas exchange, evapotranspiration efficiency, morphophysiology and productivity of cowpeas under water deficit PDF full book. Access full book title Gas exchange, evapotranspiration efficiency, morphophysiology and productivity of cowpeas under water deficit by Samson Huni. Download full books in PDF and EPUB format.

Gas exchange, evapotranspiration efficiency, morphophysiology and productivity of cowpeas under water deficit

Gas exchange, evapotranspiration efficiency, morphophysiology and productivity of cowpeas under water deficit PDF Author: Samson Huni
Publisher: Cuvillier Verlag
ISBN: 3736935994
Category : Science
Languages : en
Pages : 136

Book Description
The cowpea [Vigna unguiculata (L.) Walp.], a legume which originated in Africa, is now grown in the Tropics and many subtropical regions. Cowpea is of significance for food and feed and its yield is frequently severely affected by drought, resulting in its low average yield. Hence the influence of water deficit on gas exchange, growth, development and yield of cowpea was studied here, with the aim of contributing to our understanding of the response of cowpeas to water deficit and to the provision of efficient and viable information for breeding of drought resistant genotypes. To achieve this aim, several traits were examined, which included - gas exchange [stomatal conductance (gs), net photosynthetic rate PN), transpiration rate (E) and intrinsic transpiration efficiency TEi)], evapotranspiration efficiency (ETE), water use (WU) and yield/yield components, - relationship among these traits and variability among the various genotypes. From the results it was expected that it would be possible to find efficient plant types and characteristics to predict ETE and yield which could eventually be used in cowpea drought resistance breeding programmes. For this purpose three pot experiments were conducted in the greenhouse under drip irrigation. The control (well-watered treatment) was irrigated continuously from the beginning to the end of the experiments, while the water-deficit treatment experienced a reduced irrigation resulting in a soil water potential of -350 to -450hPa at the onset of flowering for 14 to 21 days. Measurement and analyses of various traits were carried out before the induction of water-deficit stress, during and at the end of stress. All remaining plants were then fully irrigated up to the end of the experiments. In experiments 1 and 2 the plants were harvested at maturity to determine yield and yield components, and biomass and ETE. Water-deficit stress impacted on all analysed traits and there were variations among genotypes in both treatments. Water deficit elicited the reduction of leaf relative water content and stomatal conductance. Consequently, PN and E declined as well. However, E decreased more than PN due to the influence of stress, generally leading to a higher TEi of the water-deficit treatment. There were differences among experiments, probably due to interactions between the genotypes and the environment. After stress, gas exchange recovered to similar levels of the control treatment. Biomass production, water use and evapotranspiration efficiency varied among genotypes within and between treatments. Compared with the control, water use and growth rate decreased clearly under stress. The role of PN for biomass production became evident in the positive correlation between both parameters. TEi had no distinct relationship to ETE. Three traits, specifically leaf temperature (ΔT), leaf senescence (expressed as leaf shedding score, LSS) and cell membrane stability (CMS, calculated from electrolyte leakage values) distinguish themselves as valuable tools for drought resistance analysis. ΔT rose up to 3°C higher under stress than well-watered conditions. LSS increased under stress as well, whereby the genotypes which shed a relative high number of leaves under well-watered conditions also shed an even higher amount of leaves under stress. The sole genotype which retained all its leaves under stress, UCR 328, maintained all its leaves green, which was probably tremendously valuable for a quick recovery of different plant processes after stress. ΔT was consistently positively correlated with LSS, but negatively with CMS, particularly under stress. ΔT and LSS also displayed significant relationships with ETE, TEi, grain yield and harvest index (HI). Owing to the fact that ΔT and LSS are simple, fast, cheap and non-invasively determined, they could be used in drought resistance breeding programmes as indirect selection traits for efficient plant types regarding transpiration, TEi, ETE and yield. The various genotypes yielded differently and the HI also varied under both treatments, a probable indication of differing genotypic yield potential. Water deficit at flowering reduced yield, but some genotypes had a higher HI. Generally, the genotypes with a high “yield potential” also manifested a higher yield under stress. TVu 12348 had the highest yield stability, but a low yield potential. UCR 328 and IFH 27-8 had a relatively high yield stability coupled with a high yield under stress.

Gas exchange, evapotranspiration efficiency, morphophysiology and productivity of cowpeas under water deficit

Gas exchange, evapotranspiration efficiency, morphophysiology and productivity of cowpeas under water deficit PDF Author: Samson Huni
Publisher: Cuvillier Verlag
ISBN: 3736935994
Category : Science
Languages : en
Pages : 136

Book Description
The cowpea [Vigna unguiculata (L.) Walp.], a legume which originated in Africa, is now grown in the Tropics and many subtropical regions. Cowpea is of significance for food and feed and its yield is frequently severely affected by drought, resulting in its low average yield. Hence the influence of water deficit on gas exchange, growth, development and yield of cowpea was studied here, with the aim of contributing to our understanding of the response of cowpeas to water deficit and to the provision of efficient and viable information for breeding of drought resistant genotypes. To achieve this aim, several traits were examined, which included - gas exchange [stomatal conductance (gs), net photosynthetic rate PN), transpiration rate (E) and intrinsic transpiration efficiency TEi)], evapotranspiration efficiency (ETE), water use (WU) and yield/yield components, - relationship among these traits and variability among the various genotypes. From the results it was expected that it would be possible to find efficient plant types and characteristics to predict ETE and yield which could eventually be used in cowpea drought resistance breeding programmes. For this purpose three pot experiments were conducted in the greenhouse under drip irrigation. The control (well-watered treatment) was irrigated continuously from the beginning to the end of the experiments, while the water-deficit treatment experienced a reduced irrigation resulting in a soil water potential of -350 to -450hPa at the onset of flowering for 14 to 21 days. Measurement and analyses of various traits were carried out before the induction of water-deficit stress, during and at the end of stress. All remaining plants were then fully irrigated up to the end of the experiments. In experiments 1 and 2 the plants were harvested at maturity to determine yield and yield components, and biomass and ETE. Water-deficit stress impacted on all analysed traits and there were variations among genotypes in both treatments. Water deficit elicited the reduction of leaf relative water content and stomatal conductance. Consequently, PN and E declined as well. However, E decreased more than PN due to the influence of stress, generally leading to a higher TEi of the water-deficit treatment. There were differences among experiments, probably due to interactions between the genotypes and the environment. After stress, gas exchange recovered to similar levels of the control treatment. Biomass production, water use and evapotranspiration efficiency varied among genotypes within and between treatments. Compared with the control, water use and growth rate decreased clearly under stress. The role of PN for biomass production became evident in the positive correlation between both parameters. TEi had no distinct relationship to ETE. Three traits, specifically leaf temperature (ΔT), leaf senescence (expressed as leaf shedding score, LSS) and cell membrane stability (CMS, calculated from electrolyte leakage values) distinguish themselves as valuable tools for drought resistance analysis. ΔT rose up to 3°C higher under stress than well-watered conditions. LSS increased under stress as well, whereby the genotypes which shed a relative high number of leaves under well-watered conditions also shed an even higher amount of leaves under stress. The sole genotype which retained all its leaves under stress, UCR 328, maintained all its leaves green, which was probably tremendously valuable for a quick recovery of different plant processes after stress. ΔT was consistently positively correlated with LSS, but negatively with CMS, particularly under stress. ΔT and LSS also displayed significant relationships with ETE, TEi, grain yield and harvest index (HI). Owing to the fact that ΔT and LSS are simple, fast, cheap and non-invasively determined, they could be used in drought resistance breeding programmes as indirect selection traits for efficient plant types regarding transpiration, TEi, ETE and yield. The various genotypes yielded differently and the HI also varied under both treatments, a probable indication of differing genotypic yield potential. Water deficit at flowering reduced yield, but some genotypes had a higher HI. Generally, the genotypes with a high “yield potential” also manifested a higher yield under stress. TVu 12348 had the highest yield stability, but a low yield potential. UCR 328 and IFH 27-8 had a relatively high yield stability coupled with a high yield under stress.

Effect of Water Deficit on the Growth, Yield, and Water Use of a Field-grown Cowpea Crop

Effect of Water Deficit on the Growth, Yield, and Water Use of a Field-grown Cowpea Crop PDF Author: Peter John Shouse
Publisher:
ISBN:
Category : Cowpea
Languages : en
Pages : 452

Book Description


Drought Resistance in Crops with Emphasis on Rice

Drought Resistance in Crops with Emphasis on Rice PDF Author: International Rice Research Institute
Publisher: Int. Rice Res. Inst.
ISBN: 9711040786
Category : Crop yields
Languages : en
Pages : 422

Book Description


Drought Stress Tolerance in Plants, Vol 1

Drought Stress Tolerance in Plants, Vol 1 PDF Author: Mohammad Anwar Hossain
Publisher: Springer
ISBN: 3319288997
Category : Technology & Engineering
Languages : en
Pages : 538

Book Description
Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.

Forage Plant Ecophysiology

Forage Plant Ecophysiology PDF Author: Cory Matthew
Publisher: MDPI
ISBN: 3038424889
Category : Technology & Engineering
Languages : en
Pages : 221

Book Description
This book is a printed edition of the Special Issue "Forage Plant Ecophysiology" that was published in Agriculture

Deficit Irrigation Practices

Deficit Irrigation Practices PDF Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9789251047682
Category : Technology & Engineering
Languages : en
Pages : 116

Book Description
In the context of improving water productivity, there is a growing interest in deficit irrigation, an irrigation practice whereby water supply is reduced below maximum levels and mild stress is allowed with minimal effects on yield. Under conditions of scarce water supply and drought, deficit irrigation can lead to greater economic gains than maximizing yields per unit of water for a given crop; farmers are more inclined to use water more efficiently, and more water-efficient cash crop selection helps optimize returns. However, this approach requires precise knowledge of crop response to water as drought tolerance varies considerably by species, cultivar and stage of growth. The studies present the latest research concepts and involve various practices for deficit irrigation. Both annual and perennial crops were exposed to different levels of water stress, either during a particular growth phase, throughout the whole growing season or in a combination of growth stages. The overall finding, based on the synthesis of the different contributions, is that deficit or regulated-deficit irrigation can be beneficial where appropriately applied. Substantial savings of water can be achieved with little impact on the quality and quantity of the harvested yield. However, to be successful, an intimate knowledge of crop behavior is required, as crop response to water stress varies considerably.

Water Productivity in Agriculture

Water Productivity in Agriculture PDF Author: J. W. Kijne
Publisher: CABI
ISBN: 1845933397
Category : Crops and water
Languages : en
Pages : 354

Book Description
First title in a major new seriesAddresses improving water productivity to relieve problems of scarcity and competition to provide for food and environmental securityDraws from scientists having a multitude of disciplines to approach this important problemIn a large number of developing countries, policy makers and researchers are increasingly aware of the conflicting demands on water, and look at agriculture to be more effective in its use of water. Focusing on both irrigated and rain-fed agriculture, this book gives a state of the art review of the limits and opportunities for improving water productivity in crop production. It demonstrates how efficiency of water use can be enhanced to maximize yields. The book represents the first in a new series of volumes resulting from the Comprehensive Assessment of Water Management in Agriculture, a research program conducted by the CGIAR's Future Harvest Centres, the Food and Agriculture Organization of the United Nations and partners worldwide. It will be of significant interest to those working in areas of soil and crop science, water management, irrigation, and development studies.

Soil Water Deficit and Physiological Issues in Plants

Soil Water Deficit and Physiological Issues in Plants PDF Author: Amitav Bhattacharya
Publisher: Springer Nature
ISBN: 9813362766
Category : Science
Languages : en
Pages : 717

Book Description
This book explores the impact of soil water deficiency on various aspects of physiological processes in plants. The book explains the effects under soil water deficit condition such as lowering of plant water content, disturbance in carbon metabolism such in photosynthesis, photorespiration and respiration as well as effects of soil water deficit on nitrogen metabolism. The book also educates the readers about, mineral nutrition under soil water deficit condition and roles of different nutrient to overcome water deficit. Changes in growth and development pattern of plant under soil water deficit condition and effects on growth and development are elaborated. This book is of interest to teachers, researchers, scientists in botany and agriculture. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences. National and international agricultural scientists, policy makers will also find this to be a useful read. The in depth description of the major physiological issues in plants under soil water deficit that are presented in this book will help breeders tailoring crops for desirable physiological survival traits in the face of increasing soil water deficit. This book is an impactful addition to the library of any faculty members, researchers, agricultural policy planner, post graduate or student studying in plant physiology, biochemistry, microbiology and other subjects related to crop husbandry.

Protected agriculture, precision agriculture, and vertical farming: Brief reviews of issues in the literature focusing on the developing region in Asia

Protected agriculture, precision agriculture, and vertical farming: Brief reviews of issues in the literature focusing on the developing region in Asia PDF Author: Takeshima, Hiroyuki
Publisher: Intl Food Policy Res Inst
ISBN:
Category : Political Science
Languages : en
Pages : 49

Book Description
The frontiers of technologies have been constantly expanded in many industries around the world, including the agricultural sector. Among many “frontier technologies” in agriculture, are protected agriculture, precision agriculture, and vertical farming, all of which depart substantially from many conventional agricultural production methods. It is not yet clear how these technologies can become adoptable in developing countries, including, for example, South Asian countries like India. This paper briefly reviews the issues associated withthese three types of frontier technologies. We do so by systematically checkingthe academic articleslisted in Google Scholar, which primarily focus on these technologies in developing countries in Asia. Where appropriate, a few widely-cited overview articles for each technology were also reviewed. The findings generally reveal where performances of these technologiescan be raised potentially, based on the general trends in the literature. Where evidence is rich, some generalizable economic insights about these technologies are provided. For protected agriculture, recent research has focusedsignificantly on various features of protective structures (tunnel heights, covering materials, shading structures, frames and sizes) indicating that there are potentials for adaptive research on such structures to raise the productivity of protected agriculture. The research on protected agriculture also focuses on types of climate parameters controlled, andenergy structures, among others. For precision agriculture, recent research has focused on the spatial variability of production environments, development of efficient and suitable data management systems, efficiency of various types of image analyses and optical sensing, efficiency of sensors and related technologies, designs of precision agriculture equipment, optimal inputs and service uses, and their spatial allocations, potentials of unmanned aerial vehicles (UAVs) and nano-technologies. For vertical farming, research has often highlighted the variations in technologies based on out-door / indoor systems, ways to improve plants’ access to light (natural or artificial), growing medium and nutrient / water supply, advanced features like electricity generation and integration of production space into an office / residential space, and water treatment. For India, issues listed above may be some of the key areas that the country can draw on from other more advanced countries in Asia, or can focus in its adaptive research to improve the relevance and applicability of these technologies to the country.

Molecular Stress Physiology of Plants

Molecular Stress Physiology of Plants PDF Author: Gyana Ranjan Rout
Publisher: Springer
ISBN: 9788132228578
Category : Science
Languages : en
Pages : 440

Book Description
Crop growth and production is dependent on various climatic factors. Both abiotic and biotic stresses have become an integral part of plant growth and development. There are several factors involved in plant stress mechanism. The information in the area of plant growth and molecular mechanism against abiotic and biotic stresses is scattered. The up-to-date information with cited references is provided in this book in an organized way. More emphasis has been given to elaborate the injury and tolerance mechanisms and growth behavior in plants against abiotic and biotic stresses. This book also deals with abiotic and biotic stress tolerance in plants, molecular mechanism of stress resistance of photosynthetic machinery, stress tolerance in plants: special reference to salt stress - a biochemical and physiological adaptation of some Indian halophytes, PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications, salicylic acid: role in plant physiology & stress tolerance, salinity induced genes and molecular basis of salt tolerance mechanism in mangroves, reproductive stage abiotic stress tolerance in cereals, calorimetry and Raman spectrometry to study response of plant to biotic and abiotic stresses, molecular physiology of osmotic stress in plants and mechanisms, functions and toxicity of heavy metals stress in plants, submergence stress tolerance in plants and adoptive mechanism, Brassinosteroid modulated stress responses under temperature stress, stress tolerant in plants: a proteomics approach, Marker-assisted breeding for stress resistance in crop plants, DNA methylation associated epigenetic changes in stress tolerance of plants and role of calcium-mediated CBL-CIPK network in plant mineral nutrition & abiotic stress. Each chapter has been laid out with introduction, up-to-date literature, possible stress mechanism, and applications. Under abiotic stress, plant produces a large quantity of free radicals, which have been elaborated. We hope that this book will be of greater use for the post-graduate students, researchers, physiologist and biotechnologist to sustain the plant growth and development.