Author: Janusz Kacprzyk
Publisher: Physica
ISBN:
Category : Business & Economics
Languages : en
Pages : 302
Book Description
Regression analysis is a relatively simple yet extremely useful and widely employed tool for determining relationship between some variables on the basis of some observed values taken by these variables. Fuzzy regression analysis has been recently deviced to accomodate in the framework of regression analysis vaguely specified data which are omnipresent in many applications, notably in all areas where human judgements are used. Fuzzy sets theory provides here proper tools. This book is a collection of papers written by virtually all major contributors to fuzzy regression. Its main issue is that vague, imprecise, etc. data may now be used in regression analysis. This is new. Apart from this it gives an extensive coverage of the whole field of fuzzy regression, both in a strictly mathematical and applicational perspective. Most approaches are algorithmic, and can be readily implemented. Information on software is provided.
Fuzzy Regression Analysis
Author: Janusz Kacprzyk
Publisher: Physica
ISBN:
Category : Business & Economics
Languages : en
Pages : 302
Book Description
Regression analysis is a relatively simple yet extremely useful and widely employed tool for determining relationship between some variables on the basis of some observed values taken by these variables. Fuzzy regression analysis has been recently deviced to accomodate in the framework of regression analysis vaguely specified data which are omnipresent in many applications, notably in all areas where human judgements are used. Fuzzy sets theory provides here proper tools. This book is a collection of papers written by virtually all major contributors to fuzzy regression. Its main issue is that vague, imprecise, etc. data may now be used in regression analysis. This is new. Apart from this it gives an extensive coverage of the whole field of fuzzy regression, both in a strictly mathematical and applicational perspective. Most approaches are algorithmic, and can be readily implemented. Information on software is provided.
Publisher: Physica
ISBN:
Category : Business & Economics
Languages : en
Pages : 302
Book Description
Regression analysis is a relatively simple yet extremely useful and widely employed tool for determining relationship between some variables on the basis of some observed values taken by these variables. Fuzzy regression analysis has been recently deviced to accomodate in the framework of regression analysis vaguely specified data which are omnipresent in many applications, notably in all areas where human judgements are used. Fuzzy sets theory provides here proper tools. This book is a collection of papers written by virtually all major contributors to fuzzy regression. Its main issue is that vague, imprecise, etc. data may now be used in regression analysis. This is new. Apart from this it gives an extensive coverage of the whole field of fuzzy regression, both in a strictly mathematical and applicational perspective. Most approaches are algorithmic, and can be readily implemented. Information on software is provided.
Fuzzy Sets in Decision Analysis, Operations Research and Statistics
Author: Roman Slowiński
Publisher: Springer Science & Business Media
ISBN: 1461556457
Category : Mathematics
Languages : en
Pages : 467
Book Description
Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: Decision Making, Mathematical Programming, Statistics and Data Analysis, and Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter. As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.
Publisher: Springer Science & Business Media
ISBN: 1461556457
Category : Mathematics
Languages : en
Pages : 467
Book Description
Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: Decision Making, Mathematical Programming, Statistics and Data Analysis, and Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter. As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.
Fuzzy Applications in Industrial Engineering
Author: Cengiz Kahraman
Publisher: Springer
ISBN: 354033517X
Category : Technology & Engineering
Languages : en
Pages : 609
Book Description
After an introductory chapter explaining recent applications of fuzzy sets in IE, this book explores the seven major areas of IE to which fuzzy set theory can contribute: Control and Reliability, Engineering Economics and Investment Analysis, Group and Multi-criteria Decision-making, Human Factors Engineering and Ergonomics, Manufacturing Systems and Technology Management, Optimization Techniques, and Statistical Decision-making. Under these major areas, every chapter includes didactic numerical applications.
Publisher: Springer
ISBN: 354033517X
Category : Technology & Engineering
Languages : en
Pages : 609
Book Description
After an introductory chapter explaining recent applications of fuzzy sets in IE, this book explores the seven major areas of IE to which fuzzy set theory can contribute: Control and Reliability, Engineering Economics and Investment Analysis, Group and Multi-criteria Decision-making, Human Factors Engineering and Ergonomics, Manufacturing Systems and Technology Management, Optimization Techniques, and Statistical Decision-making. Under these major areas, every chapter includes didactic numerical applications.
Ridge Fuzzy Regression Modelling for Solving Multicollinearity
Author: Hyoshin Kim
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 15
Book Description
This paper proposes an a-level estimation algorithm for ridge fuzzy regression modeling, addressing the multicollinearity phenomenon in the fuzzy linear regression setting.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 15
Book Description
This paper proposes an a-level estimation algorithm for ridge fuzzy regression modeling, addressing the multicollinearity phenomenon in the fuzzy linear regression setting.
Regression Modeling
Author: Michael Panik
Publisher: CRC Press
ISBN: 1420091980
Category : Mathematics
Languages : en
Pages : 832
Book Description
Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least square
Publisher: CRC Press
ISBN: 1420091980
Category : Mathematics
Languages : en
Pages : 832
Book Description
Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least square
Practical Examples of Energy Optimization Models
Author: Samsul Ariffin Abdul Karim
Publisher: Springer Nature
ISBN: 9811521999
Category : Technology & Engineering
Languages : en
Pages : 96
Book Description
This book highlights state-of-the-art research on renewable energy integration technology and suitable and efficient power generation, discussing smart grids, renewable energy grid integration, prediction control models, and econometric models for predicting the global solar radiation and factors that affect solar radiation, performance evaluation of photovoltaic systems, and improved energy consumption prediction models. It discusses several methods, algorithms, environmental data-based performance analyses, and experimental results to help readers gain a detailed understanding of the pros and cons of technologies in this rapidly growing area. Accordingly, it offers a valuable resource for students and researchers working on renewable energy optimization models.
Publisher: Springer Nature
ISBN: 9811521999
Category : Technology & Engineering
Languages : en
Pages : 96
Book Description
This book highlights state-of-the-art research on renewable energy integration technology and suitable and efficient power generation, discussing smart grids, renewable energy grid integration, prediction control models, and econometric models for predicting the global solar radiation and factors that affect solar radiation, performance evaluation of photovoltaic systems, and improved energy consumption prediction models. It discusses several methods, algorithms, environmental data-based performance analyses, and experimental results to help readers gain a detailed understanding of the pros and cons of technologies in this rapidly growing area. Accordingly, it offers a valuable resource for students and researchers working on renewable energy optimization models.
Statistical Methods for Fuzzy Data
Author: Reinhard Viertl
Publisher: John Wiley & Sons
ISBN: 0470974567
Category : Mathematics
Languages : en
Pages : 199
Book Description
Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy measurement results. Furthermore, statistical methods are then generalized to the analysis of fuzzy data and fuzzy a-priori information. Key Features: Provides basic methods for the mathematical description of fuzzy data, as well as statistical methods that can be used to analyze fuzzy data. Describes methods of increasing importance with applications in areas such as environmental statistics and social science. Complements the theory with exercises and solutions and is illustrated throughout with diagrams and examples. Explores areas such quantitative description of data uncertainty and mathematical description of fuzzy data. This work is aimed at statisticians working with fuzzy logic, engineering statisticians, finance researchers, and environmental statisticians. It is written for readers who are familiar with elementary stochastic models and basic statistical methods.
Publisher: John Wiley & Sons
ISBN: 0470974567
Category : Mathematics
Languages : en
Pages : 199
Book Description
Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy measurement results. Furthermore, statistical methods are then generalized to the analysis of fuzzy data and fuzzy a-priori information. Key Features: Provides basic methods for the mathematical description of fuzzy data, as well as statistical methods that can be used to analyze fuzzy data. Describes methods of increasing importance with applications in areas such as environmental statistics and social science. Complements the theory with exercises and solutions and is illustrated throughout with diagrams and examples. Explores areas such quantitative description of data uncertainty and mathematical description of fuzzy data. This work is aimed at statisticians working with fuzzy logic, engineering statisticians, finance researchers, and environmental statisticians. It is written for readers who are familiar with elementary stochastic models and basic statistical methods.
Fuzzy Statistics
Author: James J. Buckley
Publisher: Springer
ISBN: 3540399194
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
1. 1 Introduction This book is written in four major divisions. The first part is the introductory chapters consisting of Chapters 1 and 2. In part two, Chapters 3-11, we develop fuzzy estimation. For example, in Chapter 3 we construct a fuzzy estimator for the mean of a normal distribution assuming the variance is known. More details on fuzzy estimation are in Chapter 3 and then after Chapter 3, Chapters 4-11 can be read independently. Part three, Chapters 12- 20, are on fuzzy hypothesis testing. For example, in Chapter 12 we consider the test Ho : /1 = /10 verses HI : /1 f=- /10 where /1 is the mean of a normal distribution with known variance, but we use a fuzzy number (from Chapter 3) estimator of /1 in the test statistic. More details on fuzzy hypothesis testing are in Chapter 12 and then after Chapter 12 Chapters 13-20 may be read independently. Part four, Chapters 21-27, are on fuzzy regression and fuzzy prediction. We start with fuzzy correlation in Chapter 21. Simple linear regression is the topic in Chapters 22-24 and Chapters 25-27 concentrate on multiple linear regression. Part two (fuzzy estimation) is used in Chapters 22 and 25; and part 3 (fuzzy hypothesis testing) is employed in Chapters 24 and 27. Fuzzy prediction is contained in Chapters 23 and 26. A most important part of our models in fuzzy statistics is that we always start with a random sample producing crisp (non-fuzzy) data.
Publisher: Springer
ISBN: 3540399194
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
1. 1 Introduction This book is written in four major divisions. The first part is the introductory chapters consisting of Chapters 1 and 2. In part two, Chapters 3-11, we develop fuzzy estimation. For example, in Chapter 3 we construct a fuzzy estimator for the mean of a normal distribution assuming the variance is known. More details on fuzzy estimation are in Chapter 3 and then after Chapter 3, Chapters 4-11 can be read independently. Part three, Chapters 12- 20, are on fuzzy hypothesis testing. For example, in Chapter 12 we consider the test Ho : /1 = /10 verses HI : /1 f=- /10 where /1 is the mean of a normal distribution with known variance, but we use a fuzzy number (from Chapter 3) estimator of /1 in the test statistic. More details on fuzzy hypothesis testing are in Chapter 12 and then after Chapter 12 Chapters 13-20 may be read independently. Part four, Chapters 21-27, are on fuzzy regression and fuzzy prediction. We start with fuzzy correlation in Chapter 21. Simple linear regression is the topic in Chapters 22-24 and Chapters 25-27 concentrate on multiple linear regression. Part two (fuzzy estimation) is used in Chapters 22 and 25; and part 3 (fuzzy hypothesis testing) is employed in Chapters 24 and 27. Fuzzy prediction is contained in Chapters 23 and 26. A most important part of our models in fuzzy statistics is that we always start with a random sample producing crisp (non-fuzzy) data.
Linear Regression Analysis
Author: Xin Yan
Publisher: World Scientific
ISBN: 9812834109
Category : Mathematics
Languages : en
Pages : 349
Book Description
"This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.
Publisher: World Scientific
ISBN: 9812834109
Category : Mathematics
Languages : en
Pages : 349
Book Description
"This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.
A Practical Introduction to Regression Discontinuity Designs
Author: Matias D. Cattaneo
Publisher: Cambridge University Press
ISBN: 1108670423
Category : Political Science
Languages : en
Pages : 118
Book Description
In this Element and its accompanying second Element, A Practical Introduction to Regression Discontinuity Designs: Extensions, Matias Cattaneo, Nicolás Idrobo, and Rocıìo Titiunik provide an accessible and practical guide for the analysis and interpretation of regression discontinuity (RD) designs that encourages the use of a common set of practices and facilitates the accumulation of RD-based empirical evidence. In this Element, the authors discuss the foundations of the canonical Sharp RD design, which has the following features: (i) the score is continuously distributed and has only one dimension, (ii) there is only one cutoff, and (iii) compliance with the treatment assignment is perfect. In the second Element, the authors discuss practical and conceptual extensions to this basic RD setup.
Publisher: Cambridge University Press
ISBN: 1108670423
Category : Political Science
Languages : en
Pages : 118
Book Description
In this Element and its accompanying second Element, A Practical Introduction to Regression Discontinuity Designs: Extensions, Matias Cattaneo, Nicolás Idrobo, and Rocıìo Titiunik provide an accessible and practical guide for the analysis and interpretation of regression discontinuity (RD) designs that encourages the use of a common set of practices and facilitates the accumulation of RD-based empirical evidence. In this Element, the authors discuss the foundations of the canonical Sharp RD design, which has the following features: (i) the score is continuously distributed and has only one dimension, (ii) there is only one cutoff, and (iii) compliance with the treatment assignment is perfect. In the second Element, the authors discuss practical and conceptual extensions to this basic RD setup.