Author: James J. Buckley
Publisher: Physica
ISBN: 3642867863
Category : Computers
Languages : en
Pages : 168
Book Description
In probability and statistics we often have to estimate probabilities and parameters in probability distributions using a random sample. Instead of using a point estimate calculated from the data we propose using fuzzy numbers which are constructed from a set of confidence intervals. In probability calculations we apply constrained fuzzy arithmetic because probabilities must add to one. Fuzzy random variables have fuzzy distributions. A fuzzy normal random variable has the normal distribution with fuzzy number mean and variance. Applications are to queuing theory, Markov chains, inventory control, decision theory and reliability theory.
Fuzzy Probabilities
Author: James J. Buckley
Publisher: Physica
ISBN: 3642867863
Category : Computers
Languages : en
Pages : 168
Book Description
In probability and statistics we often have to estimate probabilities and parameters in probability distributions using a random sample. Instead of using a point estimate calculated from the data we propose using fuzzy numbers which are constructed from a set of confidence intervals. In probability calculations we apply constrained fuzzy arithmetic because probabilities must add to one. Fuzzy random variables have fuzzy distributions. A fuzzy normal random variable has the normal distribution with fuzzy number mean and variance. Applications are to queuing theory, Markov chains, inventory control, decision theory and reliability theory.
Publisher: Physica
ISBN: 3642867863
Category : Computers
Languages : en
Pages : 168
Book Description
In probability and statistics we often have to estimate probabilities and parameters in probability distributions using a random sample. Instead of using a point estimate calculated from the data we propose using fuzzy numbers which are constructed from a set of confidence intervals. In probability calculations we apply constrained fuzzy arithmetic because probabilities must add to one. Fuzzy random variables have fuzzy distributions. A fuzzy normal random variable has the normal distribution with fuzzy number mean and variance. Applications are to queuing theory, Markov chains, inventory control, decision theory and reliability theory.
Fuzzy Probability and Statistics
Author: James J. Buckley
Publisher: Springer
ISBN: 3540331905
Category : Computers
Languages : en
Pages : 262
Book Description
This book combines material from our previous books FP (Fuzzy Probabilities: New Approach and Applications,Physica-Verlag, 2003) and FS (Fuzzy Statistics, Springer, 2004), plus has about one third new results. From FP we have material on basic fuzzy probability, discrete (fuzzy Poisson,binomial) and continuous (uniform, normal, exponential) fuzzy random variables. From FS we included chapters on fuzzy estimation and fuzzy hypothesis testing related to means, variances, proportions, correlation and regression. New material includes fuzzy estimators for arrival and service rates, and the uniform distribution, with applications in fuzzy queuing theory. Also, new to this book, is three chapters on fuzzy maximum entropy (imprecise side conditions) estimators producing fuzzy distributions and crisp discrete/continuous distributions. Other new results are: (1) two chapters on fuzzy ANOVA (one-way and two-way); (2) random fuzzy numbers with applications to fuzzy Monte Carlo studies; and (3) a fuzzy nonparametric estimator for the median.
Publisher: Springer
ISBN: 3540331905
Category : Computers
Languages : en
Pages : 262
Book Description
This book combines material from our previous books FP (Fuzzy Probabilities: New Approach and Applications,Physica-Verlag, 2003) and FS (Fuzzy Statistics, Springer, 2004), plus has about one third new results. From FP we have material on basic fuzzy probability, discrete (fuzzy Poisson,binomial) and continuous (uniform, normal, exponential) fuzzy random variables. From FS we included chapters on fuzzy estimation and fuzzy hypothesis testing related to means, variances, proportions, correlation and regression. New material includes fuzzy estimators for arrival and service rates, and the uniform distribution, with applications in fuzzy queuing theory. Also, new to this book, is three chapters on fuzzy maximum entropy (imprecise side conditions) estimators producing fuzzy distributions and crisp discrete/continuous distributions. Other new results are: (1) two chapters on fuzzy ANOVA (one-way and two-way); (2) random fuzzy numbers with applications to fuzzy Monte Carlo studies; and (3) a fuzzy nonparametric estimator for the median.
Fuzzy Statistics
Author: James J. Buckley
Publisher: Springer
ISBN: 3540399194
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
1. 1 Introduction This book is written in four major divisions. The first part is the introductory chapters consisting of Chapters 1 and 2. In part two, Chapters 3-11, we develop fuzzy estimation. For example, in Chapter 3 we construct a fuzzy estimator for the mean of a normal distribution assuming the variance is known. More details on fuzzy estimation are in Chapter 3 and then after Chapter 3, Chapters 4-11 can be read independently. Part three, Chapters 12- 20, are on fuzzy hypothesis testing. For example, in Chapter 12 we consider the test Ho : /1 = /10 verses HI : /1 f=- /10 where /1 is the mean of a normal distribution with known variance, but we use a fuzzy number (from Chapter 3) estimator of /1 in the test statistic. More details on fuzzy hypothesis testing are in Chapter 12 and then after Chapter 12 Chapters 13-20 may be read independently. Part four, Chapters 21-27, are on fuzzy regression and fuzzy prediction. We start with fuzzy correlation in Chapter 21. Simple linear regression is the topic in Chapters 22-24 and Chapters 25-27 concentrate on multiple linear regression. Part two (fuzzy estimation) is used in Chapters 22 and 25; and part 3 (fuzzy hypothesis testing) is employed in Chapters 24 and 27. Fuzzy prediction is contained in Chapters 23 and 26. A most important part of our models in fuzzy statistics is that we always start with a random sample producing crisp (non-fuzzy) data.
Publisher: Springer
ISBN: 3540399194
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
1. 1 Introduction This book is written in four major divisions. The first part is the introductory chapters consisting of Chapters 1 and 2. In part two, Chapters 3-11, we develop fuzzy estimation. For example, in Chapter 3 we construct a fuzzy estimator for the mean of a normal distribution assuming the variance is known. More details on fuzzy estimation are in Chapter 3 and then after Chapter 3, Chapters 4-11 can be read independently. Part three, Chapters 12- 20, are on fuzzy hypothesis testing. For example, in Chapter 12 we consider the test Ho : /1 = /10 verses HI : /1 f=- /10 where /1 is the mean of a normal distribution with known variance, but we use a fuzzy number (from Chapter 3) estimator of /1 in the test statistic. More details on fuzzy hypothesis testing are in Chapter 12 and then after Chapter 12 Chapters 13-20 may be read independently. Part four, Chapters 21-27, are on fuzzy regression and fuzzy prediction. We start with fuzzy correlation in Chapter 21. Simple linear regression is the topic in Chapters 22-24 and Chapters 25-27 concentrate on multiple linear regression. Part two (fuzzy estimation) is used in Chapters 22 and 25; and part 3 (fuzzy hypothesis testing) is employed in Chapters 24 and 27. Fuzzy prediction is contained in Chapters 23 and 26. A most important part of our models in fuzzy statistics is that we always start with a random sample producing crisp (non-fuzzy) data.
Fuzzy Logic and Probability Applications
Author: Timothy J. Ross
Publisher: SIAM
ISBN: 0898715253
Category : Mathematics
Languages : en
Pages : 424
Book Description
Shows both the shortcomings and benefits of each technique, and even demonstrates useful combinations of the two.
Publisher: SIAM
ISBN: 0898715253
Category : Mathematics
Languages : en
Pages : 424
Book Description
Shows both the shortcomings and benefits of each technique, and even demonstrates useful combinations of the two.
Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers By Lotfi A Zadeh
Author: George J Klir
Publisher: World Scientific
ISBN: 9814499811
Category : Computers
Languages : en
Pages : 842
Book Description
This book consists of selected papers written by the founder of fuzzy set theory, Lotfi A Zadeh. Since Zadeh is not only the founder of this field, but has also been the principal contributor to its development over the last 30 years, the papers contain virtually all the major ideas in fuzzy set theory, fuzzy logic, and fuzzy systems in their historical context. Many of the ideas presented in the papers are still open to further development. The book is thus an important resource for anyone interested in the areas of fuzzy set theory, fuzzy logic, and fuzzy systems, as well as their applications. Moreover, the book is also intended to play a useful role in higher education, as a rich source of supplementary reading in relevant courses and seminars.The book contains a bibliography of all papers published by Zadeh in the period 1949-1995. It also contains an introduction that traces the development of Zadeh's ideas pertaining to fuzzy sets, fuzzy logic, and fuzzy systems via his papers. The ideas range from his 1965 seminal idea of the concept of a fuzzy set to ideas reflecting his current interest in computing with words — a computing in which linguistic expressions are used in place of numbers.Places in the papers, where each idea is presented can easily be found by the reader via the Subject Index.
Publisher: World Scientific
ISBN: 9814499811
Category : Computers
Languages : en
Pages : 842
Book Description
This book consists of selected papers written by the founder of fuzzy set theory, Lotfi A Zadeh. Since Zadeh is not only the founder of this field, but has also been the principal contributor to its development over the last 30 years, the papers contain virtually all the major ideas in fuzzy set theory, fuzzy logic, and fuzzy systems in their historical context. Many of the ideas presented in the papers are still open to further development. The book is thus an important resource for anyone interested in the areas of fuzzy set theory, fuzzy logic, and fuzzy systems, as well as their applications. Moreover, the book is also intended to play a useful role in higher education, as a rich source of supplementary reading in relevant courses and seminars.The book contains a bibliography of all papers published by Zadeh in the period 1949-1995. It also contains an introduction that traces the development of Zadeh's ideas pertaining to fuzzy sets, fuzzy logic, and fuzzy systems via his papers. The ideas range from his 1965 seminal idea of the concept of a fuzzy set to ideas reflecting his current interest in computing with words — a computing in which linguistic expressions are used in place of numbers.Places in the papers, where each idea is presented can easily be found by the reader via the Subject Index.
Fuzzy Statistical Inferences Based on Fuzzy Random Variables
Author: Gholamreza Hesamian
Publisher: CRC Press
ISBN: 9781003248644
Category : Mathematics
Languages : en
Pages : 288
Book Description
This book presents the most commonly used techniques for the most statistical inferences based on fuzzy data. It brings together many of the main ideas used in statistical inferences in one place, based on fuzzy information including fuzzy data. This book covers a much wider range of topics than a typical introductory text on fuzzy statistics. It includes common topics like elementary probability, descriptive statistics, hypothesis tests, one-way ANOVA, control-charts, reliability systems and regression models The reader is assumed to know calculus and a little fuzzy set theory. The conventional knowledge of probability and statistics is required. Key Features: Includes example in Mathematica and MATLAB. Contains theoretical and applied exercises for each section. Presents various popular methods for analyzing fuzzy data. The book is suitable for students and researchers in statistics, social science, engineering, and economics, and it can be used at graduate and P.h.D level. Gholamreza Hesamian is Associate Professor of Statistics at Payame Noor University. His research areas include decision theory, probability theory, fuzzy mathematics, and statistics.
Publisher: CRC Press
ISBN: 9781003248644
Category : Mathematics
Languages : en
Pages : 288
Book Description
This book presents the most commonly used techniques for the most statistical inferences based on fuzzy data. It brings together many of the main ideas used in statistical inferences in one place, based on fuzzy information including fuzzy data. This book covers a much wider range of topics than a typical introductory text on fuzzy statistics. It includes common topics like elementary probability, descriptive statistics, hypothesis tests, one-way ANOVA, control-charts, reliability systems and regression models The reader is assumed to know calculus and a little fuzzy set theory. The conventional knowledge of probability and statistics is required. Key Features: Includes example in Mathematica and MATLAB. Contains theoretical and applied exercises for each section. Presents various popular methods for analyzing fuzzy data. The book is suitable for students and researchers in statistics, social science, engineering, and economics, and it can be used at graduate and P.h.D level. Gholamreza Hesamian is Associate Professor of Statistics at Payame Noor University. His research areas include decision theory, probability theory, fuzzy mathematics, and statistics.
Fuzziness and Approximate Reasoning
Author: Kofi Kissi Dompere
Publisher: Springer
ISBN: 3540880879
Category : Mathematics
Languages : en
Pages : 311
Book Description
We do not perceive the present as it is and in totality, nor do we infer the future from the present with any high degree of dependability, nor yet do we accurately know the consequences of our own actions. In addition, there is a fourth source of error to be taken into account, for we do not execute actions in the precise form in which they are imaged and willed. Frank H. Knight [R4.34, p. 202] The “degree” of certainty of confidence felt in the conclusion after it is reached cannot be ignored, for it is of the greatest practical signi- cance. The action which follows upon an opinion depends as much upon the amount of confidence in that opinion as it does upon fav- ableness of the opinion itself. The ultimate logic, or psychology, of these deliberations is obscure, a part of the scientifically unfathomable mystery of life and mind. Frank H. Knight [R4.34, p. 226-227] With some inaccuracy, description of uncertain consequences can be classified into two categories, those which use exclusively the language of probability distributions and those which call for some other principle, either to replace or supplement.
Publisher: Springer
ISBN: 3540880879
Category : Mathematics
Languages : en
Pages : 311
Book Description
We do not perceive the present as it is and in totality, nor do we infer the future from the present with any high degree of dependability, nor yet do we accurately know the consequences of our own actions. In addition, there is a fourth source of error to be taken into account, for we do not execute actions in the precise form in which they are imaged and willed. Frank H. Knight [R4.34, p. 202] The “degree” of certainty of confidence felt in the conclusion after it is reached cannot be ignored, for it is of the greatest practical signi- cance. The action which follows upon an opinion depends as much upon the amount of confidence in that opinion as it does upon fav- ableness of the opinion itself. The ultimate logic, or psychology, of these deliberations is obscure, a part of the scientifically unfathomable mystery of life and mind. Frank H. Knight [R4.34, p. 226-227] With some inaccuracy, description of uncertain consequences can be classified into two categories, those which use exclusively the language of probability distributions and those which call for some other principle, either to replace or supplement.
Soft Methods for Handling Variability and Imprecision
Author: Didier Dubois
Publisher: Springer Science & Business Media
ISBN: 3540850279
Category : Mathematics
Languages : en
Pages : 436
Book Description
Probability theory has been the only well-founded theory of uncertainty for a long time. It was viewed either as a powerful tool for modelling random phenomena, or as a rational approach to the notion of degree of belief. During the last thirty years, in areas centered around decision theory, artificial intelligence and information processing, numerous approaches extending or orthogonal to the existing theory of probability and mathematical statistics have come to the front. The common feature of those attempts is to allow for softer or wider frameworks for taking into account the incompleteness or imprecision of information. Many of these approaches come down to blending interval or fuzzy interval analysis with probabilistic methods. This book gathers contributions to the 4th International Conference on Soft methods in Probability and Statistics. Its aim is to present recent results illustrating such new trends that enlarge the statistical and uncertainty modeling traditions, towards the handling of incomplete or subjective information. It covers a broad scope ranging from philosophical and mathematical underpinnings of new uncertainty theories, with a stress on their impact in the area of statistics and data analysis, to numerical methods and applications to environmental risk analysis and mechanical engineering. A unique feature of this collection is to establish a dialogue between fuzzy random variables and imprecise probability theories.
Publisher: Springer Science & Business Media
ISBN: 3540850279
Category : Mathematics
Languages : en
Pages : 436
Book Description
Probability theory has been the only well-founded theory of uncertainty for a long time. It was viewed either as a powerful tool for modelling random phenomena, or as a rational approach to the notion of degree of belief. During the last thirty years, in areas centered around decision theory, artificial intelligence and information processing, numerous approaches extending or orthogonal to the existing theory of probability and mathematical statistics have come to the front. The common feature of those attempts is to allow for softer or wider frameworks for taking into account the incompleteness or imprecision of information. Many of these approaches come down to blending interval or fuzzy interval analysis with probabilistic methods. This book gathers contributions to the 4th International Conference on Soft methods in Probability and Statistics. Its aim is to present recent results illustrating such new trends that enlarge the statistical and uncertainty modeling traditions, towards the handling of incomplete or subjective information. It covers a broad scope ranging from philosophical and mathematical underpinnings of new uncertainty theories, with a stress on their impact in the area of statistics and data analysis, to numerical methods and applications to environmental risk analysis and mechanical engineering. A unique feature of this collection is to establish a dialogue between fuzzy random variables and imprecise probability theories.
Fundamentals of Statistics with Fuzzy Data
Author: Hung T. Nguyen
Publisher: Springer
ISBN: 3540316973
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book presents basic aspects for a theory of statistics with fuzzy data, together with a set of practical applications. Theories of fuzzy logic and of random closed sets are used as basic ingredients in building statistical concepts and procedures in the context of imprecise data, including coarse data analysis. The book aims at motivating statisticians to examine fuzzy statistics to enlarge the domain of applicability of statistics in general.
Publisher: Springer
ISBN: 3540316973
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book presents basic aspects for a theory of statistics with fuzzy data, together with a set of practical applications. Theories of fuzzy logic and of random closed sets are used as basic ingredients in building statistical concepts and procedures in the context of imprecise data, including coarse data analysis. The book aims at motivating statisticians to examine fuzzy statistics to enlarge the domain of applicability of statistics in general.
Views on Fuzzy Sets and Systems from Different Perspectives
Author: Rudolf Seising
Publisher: Springer Science & Business Media
ISBN: 354093801X
Category : Computers
Languages : en
Pages : 604
Book Description
This book presents the complete philosophy of Fuzzy Set Theory. It offers a collection of views from scholars involved in various research projects concerning fuzziness in science, technology, economic systems, social sciences, logics and philosophy.
Publisher: Springer Science & Business Media
ISBN: 354093801X
Category : Computers
Languages : en
Pages : 604
Book Description
This book presents the complete philosophy of Fuzzy Set Theory. It offers a collection of views from scholars involved in various research projects concerning fuzziness in science, technology, economic systems, social sciences, logics and philosophy.