Fuzzy Model Identification PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fuzzy Model Identification PDF full book. Access full book title Fuzzy Model Identification by Hans Hellendoorn. Download full books in PDF and EPUB format.

Fuzzy Model Identification

Fuzzy Model Identification PDF Author: Hans Hellendoorn
Publisher: Springer
ISBN:
Category : Computers
Languages : en
Pages : 350

Book Description
Introduction; General overview; Fuzzy identification from a grey box modeling point of view; Clustering methods; Constructing fuzzy models by product space clustering; Identification of Takagi-Sugeno fuzzy models via clustering and Hough transform; Rapid prototyping of fuzzy models based on hierarchical clustering; Neural networks; Fuzzy identification using methods of intelligent data analysis; Identification of singleton fuzzy models via fuzzy hyperrectangular composite NN; Genetic algorithms; Identification of linguistic fuzzy models by means of genetic algorithms.; Optimization of fuzzy models by global numeric optimizaton; Artificial intelligence; Identification of linguistic fuzzy models based on learning.

Fuzzy Model Identification

Fuzzy Model Identification PDF Author: Hans Hellendoorn
Publisher: Springer
ISBN:
Category : Computers
Languages : en
Pages : 350

Book Description
Introduction; General overview; Fuzzy identification from a grey box modeling point of view; Clustering methods; Constructing fuzzy models by product space clustering; Identification of Takagi-Sugeno fuzzy models via clustering and Hough transform; Rapid prototyping of fuzzy models based on hierarchical clustering; Neural networks; Fuzzy identification using methods of intelligent data analysis; Identification of singleton fuzzy models via fuzzy hyperrectangular composite NN; Genetic algorithms; Identification of linguistic fuzzy models by means of genetic algorithms.; Optimization of fuzzy models by global numeric optimizaton; Artificial intelligence; Identification of linguistic fuzzy models based on learning.

Fuzzy Model Identification for Control

Fuzzy Model Identification for Control PDF Author: Janos Abonyi
Publisher: Springer Science & Business Media
ISBN: 146120027X
Category : Technology & Engineering
Languages : en
Pages : 279

Book Description
This book presents new approaches to constructing fuzzy models for model-based control. Simulated examples and real-world applications from chemical and process engineering illustrate the main methods and techniques. Supporting MATLAB and Simulink files create a computational platform for exploration of the concepts and algorithms.

Fuzzy Control and Identification

Fuzzy Control and Identification PDF Author: John H. Lilly
Publisher: John Wiley & Sons
ISBN: 1118097815
Category : Technology & Engineering
Languages : en
Pages : 199

Book Description
This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.

Fuzzy Logic, Identification and Predictive Control

Fuzzy Logic, Identification and Predictive Control PDF Author: Jairo Jose Espinosa Oviedo
Publisher: Springer Science & Business Media
ISBN: 1846280877
Category : Technology & Engineering
Languages : en
Pages : 274

Book Description
Modern industrial processes and systems require adaptable advanced control protocols able to deal with circumstances demanding "judgement” rather than simple "yes/no”, "on/off” responses: circumstances where a linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious for this purpose. Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real industrial systems and simulations. The second part exploits such models to design control systems employing techniques like data mining. This monograph presents a combination of fuzzy control theory and industrial serviceability that will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student.

Fuzzy Modeling for Control

Fuzzy Modeling for Control PDF Author: Robert Babuška
Publisher: Springer Science & Business Media
ISBN: 9401148686
Category : Mathematics
Languages : en
Pages : 269

Book Description
Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.

Fuzzy Systems

Fuzzy Systems PDF Author: Hung T. Nguyen
Publisher: Springer Science & Business Media
ISBN: 1461555051
Category : Mathematics
Languages : en
Pages : 532

Book Description
The analysis and control of complex systems have been the main motivation for the emergence of fuzzy set theory since its inception. It is also a major research field where many applications, especially industrial ones, have made fuzzy logic famous. This unique handbook is devoted to an extensive, organized, and up-to-date presentation of fuzzy systems engineering methods. The book includes detailed material and extensive bibliographies, written by leading experts in the field, on topics such as: Use of fuzzy logic in various control systems. Fuzzy rule-based modeling and its universal approximation properties. Learning and tuning techniques for fuzzy models, using neural networks and genetic algorithms. Fuzzy control methods, including issues such as stability analysis and design techniques, as well as the relationship with traditional linear control. Fuzzy sets relation to the study of chaotic systems, and the fuzzy extension of set-valued approaches to systems modeling through the use of differential inclusions. Fuzzy Systems: Modeling and Control is part of The Handbooks of Fuzzy Sets Series. The series provides a complete picture of contemporary fuzzy set theory and its applications. This volume is a key reference for systems engineers and scientists seeking a guide to the vast amount of literature in fuzzy logic modeling and control.

Fuzzy Model Identification

Fuzzy Model Identification PDF Author: Hans Hellendoorn
Publisher: Springer Science & Business Media
ISBN: 3642607675
Category : Computers
Languages : en
Pages : 334

Book Description
During the past few years two principally different approaches to the design of fuzzy controllers have emerged: heuristics-based design and model-based design. The main motivation for the heuristics-based design is given by the fact that many industrial processes are still controlled in one of the following two ways: - The process is controlled manually by an experienced operator. - The process is controlled by an automatic control system which needs manual, on-line 'trimming' of its parameters by an experienced operator. In both cases it is enough to translate in terms of a set of fuzzy if-then rules the operator's manual control algorithm or manual on-line 'trimming' strategy in order to obtain an equally good, or even better, wholly automatic fuzzy control system. This implies that the design of a fuzzy controller can only be done after a manual control algorithm or trimming strategy exists. It is admitted in the literature on fuzzy control that the heuristics-based approach to the design of fuzzy controllers is very difficult to apply to multiple-inputjmultiple-output control problems which represent the largest part of challenging industrial process control applications. Furthermore, the heuristics-based design lacks systematic and formally verifiable tuning tech niques. Also, studies of the stability, performance, and robustness of a closed loop system incorporating a heuristics-based fuzzy controller can only be done via extensive simulations.

Fuzzy Modelling

Fuzzy Modelling PDF Author: Witold Pedrycz
Publisher: Springer Science & Business Media
ISBN: 1461313651
Category : Mathematics
Languages : en
Pages : 399

Book Description
Fuzzy Modelling: Paradigms and Practice provides an up-to-date and authoritative compendium of fuzzy models, identification algorithms and applications. Chapters in this book have been written by the leading scholars and researchers in their respective subject areas. Several of these chapters include both theoretical material and applications. The editor of this volume has organized and edited the chapters into a coherent and uniform framework. The objective of this book is to provide researchers and practitioners involved in the development of models for complex systems with an understanding of fuzzy modelling, and an appreciation of what makes these models unique. The chapters are organized into three major parts covering relational models, fuzzy neural networks and rule-based models. The material on relational models includes theory along with a large number of implemented case studies, including some on speech recognition, prediction, and ecological systems. The part on fuzzy neural networks covers some fundamentals, such as neurocomputing, fuzzy neurocomputing, etc., identifies the nature of the relationship that exists between fuzzy systems and neural networks, and includes extensive coverage of their architectures. The last part addresses the main design principles governing the development of rule-based models. Fuzzy Modelling: Paradigms and Practice provides a wealth of specific fuzzy modelling paradigms, algorithms and tools used in systems modelling. Also included is a panoply of case studies from various computer, engineering and science disciplines. This should be a primary reference work for researchers and practitioners developing models of complex systems.

Analysis and Synthesis of Fuzzy Control Systems

Analysis and Synthesis of Fuzzy Control Systems PDF Author: Gang Feng
Publisher: CRC Press
ISBN: 1420092650
Category : Technology & Engineering
Languages : en
Pages : 299

Book Description
Fuzzy logic control (FLC) has proven to be a popular control methodology for many complex systems in industry, and is often used with great success as an alternative to conventional control techniques. However, because it is fundamentally model free, conventional FLC suffers from a lack of tools for systematic stability analysis and controller design. To address this problem, many model-based fuzzy control approaches have been developed, with the fuzzy dynamic model or the Takagi and Sugeno (T–S) fuzzy model-based approaches receiving the greatest attention. Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach offers a unique reference devoted to the systematic analysis and synthesis of model-based fuzzy control systems. After giving a brief review of the varieties of FLC, including the T–S fuzzy model-based control, it fully explains the fundamental concepts of fuzzy sets, fuzzy logic, and fuzzy systems. This enables the book to be self-contained and provides a basis for later chapters, which cover: T–S fuzzy modeling and identification via nonlinear models or data Stability analysis of T–S fuzzy systems Stabilization controller synthesis as well as robust H∞ and observer and output feedback controller synthesis Robust controller synthesis of uncertain T–S fuzzy systems Time-delay T–S fuzzy systems Fuzzy model predictive control Robust fuzzy filtering Adaptive control of T–S fuzzy systems A reference for scientists and engineers in systems and control, the book also serves the needs of graduate students exploring fuzzy logic control. It readily demonstrates that conventional control technology and fuzzy logic control can be elegantly combined and further developed so that disadvantages of conventional FLC can be avoided and the horizon of conventional control technology greatly extended. Many chapters feature application simulation examples and practical numerical examples based on MATLAB®.

Nonlinear System Identification

Nonlinear System Identification PDF Author: Oliver Nelles
Publisher: Springer Science & Business Media
ISBN: 3662043238
Category : Technology & Engineering
Languages : en
Pages : 785

Book Description
Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.