Fuzzy Learning and Applications

Fuzzy Learning and Applications PDF Author: Marco Russo
Publisher: CRC Press
ISBN: 1482274485
Category : Computers
Languages : en
Pages : 404

Book Description
With low computational complexity and relatively short development time, Fuzzy Logic is an indispensable tool for engineering applications. The field is growing at an unprecedented rate, and there is a need for a book that describes essential tools, applications, examples, and perspectives in the field of fuzzy learning. The editors of Fuzzy Learni

Fuzzy Neural Networks for Real Time Control Applications

Fuzzy Neural Networks for Real Time Control Applications PDF Author: Erdal Kayacan
Publisher: Butterworth-Heinemann
ISBN: 0128027037
Category : Mathematics
Languages : en
Pages : 266

Book Description
AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: • Gradient descent • Levenberg-Marquardt • Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully. - Parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis - Contains algorithms that are applicable to real time systems - Introduces fast and simple adaptation rules for type-1 and type-2 fuzzy neural networks - Number of case studies both in identification and control - Provides MATLAB® codes for some algorithms in the book

Fuzzy Sets and Fuzzy Logic

Fuzzy Sets and Fuzzy Logic PDF Author: George J. Klir
Publisher:
ISBN: 9789332549425
Category :
Languages : en
Pages : 574

Book Description


Fuzzy Logic

Fuzzy Logic PDF Author: Jenny Carter
Publisher: Springer Nature
ISBN: 3030664740
Category : Computers
Languages : en
Pages : 269

Book Description
Since its inception, fuzzy logic has attracted an incredible amount of interest, and this interest continues to grow at an exponential rate. As such, scientists, researchers, educators and practitioners of fuzzy logic continue to expand on the applicability of what and how fuzzy can be utilised in the real-world. In this book, the authors present key application areas where fuzzy has had significant success. The chapters cover a plethora of application domains, proving credence to the versatility and robustness of a fuzzy approach. A better understanding of fuzzy will ultimately allow for a better appreciation of fuzzy. This book provides the reader with a varied range of examples to illustrate what fuzzy logic can be capable of and how it can be applied. The text will be ideal for individuals new to the notion of fuzzy, as well as for early career academics who wish to further expand on their knowledge of fuzzy applications. The book is also suitable as a supporting text for advanced undergraduate and graduate-level modules on fuzzy logic, soft computing, and applications of AI.

Applications of Fuzzy Sets Theory

Applications of Fuzzy Sets Theory PDF Author: Francesco Masulli
Publisher: Springer Science & Business Media
ISBN: 354073399X
Category : Computers
Languages : en
Pages : 708

Book Description
The 7th International Workshop on Fuzzy Logic and Applications, held in Camogli, Italy in July 2007, presented the latest findings in the field. This volume features the refereed proceedings from that meeting. It includes 84 full papers as well as three keynote speeches. The papers are organized into topical sections covering fuzzy set theory, fuzzy information access and retrieval, fuzzy machine learning, and fuzzy architectures and systems.

Advanced Fuzzy Systems Design and Applications

Advanced Fuzzy Systems Design and Applications PDF Author: Yaochu Jin
Publisher: Springer Science & Business Media
ISBN: 9783790815375
Category : Computers
Languages : en
Pages : 292

Book Description
This book presents a variety of recently developed methods for generating fuzzy rules from data with the help of neural networks and evolutionary algorithms. Special efforts have been put on dealing with knowledge incorporation into neural and evolutionary systems and knowledge extraction from data with the help of fuzzy logic. On the one hand, knowledge that is understandable to human beings can be extracted from data using evolutionary and learning methods by maintaining the interpretability of the generated fuzzy rules. On the other hand, a priori knowledge like expert knowledge and human preferences can be incorporated into evolution and learning, taking advantage of the knowledge representation capability of fuzzy rule systems and fuzzy preference models. Several engineering application examples in the fields of intelligent vehicle systems, process modeling and control and robotics are presented.

Deep Neuro-Fuzzy Systems with Python

Deep Neuro-Fuzzy Systems with Python PDF Author: Himanshu Singh
Publisher: Apress
ISBN: 1484253612
Category : Computers
Languages : en
Pages : 270

Book Description
Gain insight into fuzzy logic and neural networks, and how the integration between the two models makes intelligent systems in the current world. This book simplifies the implementation of fuzzy logic and neural network concepts using Python. You’ll start by walking through the basics of fuzzy sets and relations, and how each member of the set has its own membership function values. You’ll also look at different architectures and models that have been developed, and how rules and reasoning have been defined to make the architectures possible. The book then provides a closer look at neural networks and related architectures, focusing on the various issues neural networks may encounter during training, and how different optimization methods can help you resolve them. In the last section of the book you’ll examine the integrations of fuzzy logics and neural networks, the adaptive neuro fuzzy Inference systems, and various approximations related to the same. You’ll review different types of deep neuro fuzzy classifiers, fuzzy neurons, and the adaptive learning capability of the neural networks. The book concludes by reviewing advanced neuro fuzzy models and applications. What You’ll Learn Understand fuzzy logic, membership functions, fuzzy relations, and fuzzy inferenceReview neural networks, back propagation, and optimizationWork with different architectures such as Takagi-Sugeno model, Hybrid model, genetic algorithms, and approximations Apply Python implementations of deep neuro fuzzy system Who This book Is For Data scientists and software engineers with a basic understanding of Machine Learning who want to expand into the hybrid applications of deep learning and fuzzy logic.

An Introduction to Fuzzy Logic Applications in Intelligent Systems

An Introduction to Fuzzy Logic Applications in Intelligent Systems PDF Author: Ronald R. Yager
Publisher: Springer Science & Business Media
ISBN: 1461536405
Category : Computers
Languages : en
Pages : 358

Book Description
An Introduction to Fuzzy Logic Applications in Intelligent Systems consists of a collection of chapters written by leading experts in the field of fuzzy sets. Each chapter addresses an area where fuzzy sets have been applied to situations broadly related to intelligent systems. The volume provides an introduction to and an overview of recent applications of fuzzy sets to various areas of intelligent systems. Its purpose is to provide information and easy access for people new to the field. The book also serves as an excellent reference for researchers in the field and those working in the specifics of systems development. People in computer science, especially those in artificial intelligence, knowledge-based systems, and intelligent systems will find this to be a valuable sourcebook. Engineers, particularly control engineers, will also have a strong interest in this book. Finally, the book will be of interest to researchers working in decision support systems, operations research, decision theory, management science and applied mathematics. An Introduction to Fuzzy Logic Applications in Intelligent Systems may also be used as an introductory text and, as such, it is tutorial in nature.

Type-2 Fuzzy Logic: Theory and Applications

Type-2 Fuzzy Logic: Theory and Applications PDF Author: Oscar Castillo
Publisher: Springer Science & Business Media
ISBN: 3540762833
Category : Mathematics
Languages : en
Pages : 252

Book Description
This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.

Fuzzy Neural Network Theory and Application

Fuzzy Neural Network Theory and Application PDF Author: Puyin Liu
Publisher: World Scientific
ISBN: 9789812794215
Category : Computers
Languages : en
Pages : 400

Book Description
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to help the reader grasp the underlying theory. This is a valuable reference for scientists and engineers working in mathematics, computer science, control or other fields related to information processing. It can also be used as a textbook for graduate courses in applied mathematics, computer science, automatic control and electrical engineering. Contents: Fuzzy Neural Networks for Storing and Classifying; Fuzzy Associative Memory OCo Feedback Networks; Regular Fuzzy Neural Networks; Polygonal Fuzzy Neural Networks; Approximation Analysis of Fuzzy Systems; Stochastic Fuzzy Systems and Approximations; Application of FNN to Image Restoration. Readership: Scientists, engineers and graduate students in applied mathematics, computer science, automatic control and information processing."