Fuzzy Sets in Information Retrieval and Cluster Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fuzzy Sets in Information Retrieval and Cluster Analysis PDF full book. Access full book title Fuzzy Sets in Information Retrieval and Cluster Analysis by S. Miyamoto. Download full books in PDF and EPUB format.

Fuzzy Sets in Information Retrieval and Cluster Analysis

Fuzzy Sets in Information Retrieval and Cluster Analysis PDF Author: S. Miyamoto
Publisher: Springer Science & Business Media
ISBN: 9401578877
Category : Mathematics
Languages : en
Pages : 266

Book Description
The present monograph intends to establish a solid link among three fields: fuzzy set theory, information retrieval, and cluster analysis. Fuzzy set theory supplies new concepts and methods for the other two fields, and provides a common frame work within which they can be reorganized. Four principal groups of readers are assumed: researchers or students who are interested in (a) application of fuzzy sets, (b) theory of information retrieval or bibliographic databases, (c) hierarchical clustering, and (d) application of methods in systems science. Readers in group (a) may notice that the fuzzy set theory used here is very simple, since only finite sets are dealt with. This simplification enables the max min algebra to deal with fuzzy relations and matrices as equivalent entities. Fuzzy graphs are also used for describing theoretical properties of fuzzy relations. This assumption of finite sets is sufficient for applying fuzzy sets to information retrieval and cluster analysis. This means that little theory, beyond the basic theory of fuzzy sets, is required. Although readers in group (b) with little background in the theory of fuzzy sets may have difficulty with a few sections, they will also find enough in this monograph to support an intuitive grasp of this new concept of fuzzy information retrieval. Chapter 4 provides fuzzy retrieval without the use of mathematical symbols. Also, fuzzy graphs will serve as an aid to the intuitive understanding of fuzzy relations.

Fuzzy Sets in Information Retrieval and Cluster Analysis

Fuzzy Sets in Information Retrieval and Cluster Analysis PDF Author: S. Miyamoto
Publisher: Springer Science & Business Media
ISBN: 9401578877
Category : Mathematics
Languages : en
Pages : 266

Book Description
The present monograph intends to establish a solid link among three fields: fuzzy set theory, information retrieval, and cluster analysis. Fuzzy set theory supplies new concepts and methods for the other two fields, and provides a common frame work within which they can be reorganized. Four principal groups of readers are assumed: researchers or students who are interested in (a) application of fuzzy sets, (b) theory of information retrieval or bibliographic databases, (c) hierarchical clustering, and (d) application of methods in systems science. Readers in group (a) may notice that the fuzzy set theory used here is very simple, since only finite sets are dealt with. This simplification enables the max min algebra to deal with fuzzy relations and matrices as equivalent entities. Fuzzy graphs are also used for describing theoretical properties of fuzzy relations. This assumption of finite sets is sufficient for applying fuzzy sets to information retrieval and cluster analysis. This means that little theory, beyond the basic theory of fuzzy sets, is required. Although readers in group (b) with little background in the theory of fuzzy sets may have difficulty with a few sections, they will also find enough in this monograph to support an intuitive grasp of this new concept of fuzzy information retrieval. Chapter 4 provides fuzzy retrieval without the use of mathematical symbols. Also, fuzzy graphs will serve as an aid to the intuitive understanding of fuzzy relations.

Fuzzy Information Retrieval

Fuzzy Information Retrieval PDF Author: Donald H. Kraft
Publisher: Springer
ISBN: 9783031011795
Category : Computers
Languages : en
Pages : 0

Book Description
Information retrieval used to mean looking through thousands of strings of texts to find words or symbols that matched a user's query. Today, there are many models that help index and search more effectively so retrieval takes a lot less time. Information retrieval (IR) is often seen as a subfield of computer science and shares some modeling, applications, storage applications and techniques, as do other disciplines like artificial intelligence, database management, and parallel computing. This book introduces the topic of IR and how it differs from other computer science disciplines. A discussion of the history of modern IR is briefly presented, and the notation of IR as used in this book is defined. The complex notation of relevance is discussed. Some applications of IR is noted as well since IR has many practical uses today. Using information retrieval with fuzzy logic to search for software terms can help find software components and ultimately help increase the reuse of software. This is just one practical application of IR that is covered in this book. Some of the classical models of IR is presented as a contrast to extending the Boolean model. This includes a brief mention of the source of weights for the various models. In a typical retrieval environment, answers are either yes or no, i.e., on or off. On the other hand, fuzzy logic can bring in a "degree of" match, vs. a crisp, i.e., strict match. This, too, is looked at and explored in much detail, showing how it can be applied to information retrieval. Fuzzy logic is often times considered a soft computing application and this book explores how IR with fuzzy logic and its membership functions as weights can help indexing, querying, and matching. Since fuzzy set theory and logic is explored in IR systems, the explanation of where the fuzz is ensues. The concept of relevance feedback, including pseudorelevance feedback is explored for the various models of IR. For the extended Boolean model, the use of genetic algorithms for relevance feedback is delved into. The concept of query expansion is explored using rough set theory. Various term relationships is modeled and presented, and the model extended for fuzzy retrieval. An example using the UMLS terms is also presented. The model is also extended for term relationships beyond synonyms. Finally, this book looks at clustering, both crisp and fuzzy, to see how that can improve retrieval performance. An example is presented to illustrate the concepts.

Fuzzy Information Engineering

Fuzzy Information Engineering PDF Author: Didier Dubois
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 728

Book Description
Fuzzy logic allows computer programmers to interpret ambiguous commands that ordinary, rigid programs are unable to decipher. For instance, computers can work with words like "tall" and "expensive" rather than 6'5" or $669.95. This book covers the use of fuzzy logic in the information science and information engineering fields.

Lectures on Information Retrieval

Lectures on Information Retrieval PDF Author: Maristella Agosti
Publisher: Springer
ISBN: 3540453687
Category : Computers
Languages : en
Pages : 320

Book Description
Information Retrieval (IR) is concerned with the effective and efficient retrieval of information based on its semantic content. The central problem in IR is the quest to find the set of relevant documents, among a large collection containing the information sought, satisfying a user's information need usually expressed in a natural language query. Documents may be objects or items in any medium: text, image, audio, or indeed a mixture of all three. This book presents 12 revised lectures given at the Third European Summer School in Information Retrieval, ESSIR 2000, held at the Villa Monastero, Varenna, Italy, in September 2000. The first part of the book is devoted to the foundation of IR and related areas; the second part on advanced topics addresses various current issues, from usability aspects to Web searching and browsing.

Fuzzy Information and Engineering Volume 2

Fuzzy Information and Engineering Volume 2 PDF Author: Bingyuan Cao
Publisher: Springer Science & Business Media
ISBN: 3642036643
Category : Technology & Engineering
Languages : en
Pages : 1687

Book Description
This book is the proceedings of the Third International Conference on Fuzzy Information and Engineering (ICFIE 2009) held in the famous mountain city Chongqing in Southwestern China, from September 26-29, 2009. Only high-quality papers are included. The ICFIE 2009, built on the success of previous conferences, the ICFIE 2007 (Guangzhou, China), is a major symposium for scientists, engineers and practitioners in the world to present their updated results, ideas, developments and applications in all areas of fuzzy information and engineering. It aims to strengthen relations between industry research laboratories and universities, and to create a primary symposium for world scientists in fuzzy fields as follows: Fuzzy Information; Fuzzy Sets and Systems; Soft Computing; Fuzzy Engineering; Fuzzy Operation Research and Management; Artificial Intelligence; Fuzzy Mathematics and Systems in Applications, etc.

Handbook of Research on Fuzzy Information Processing in Databases

Handbook of Research on Fuzzy Information Processing in Databases PDF Author: Galindo, Jos‚
Publisher: IGI Global
ISBN: 159904854X
Category : Computers
Languages : en
Pages : 899

Book Description
"This book provides comprehensive coverage and definitions of the most important issues, concepts, trends, and technologies in fuzzy topics applied to databases, discussing current investigation into uncertainty and imprecision management by means of fuzzy sets and fuzzy logic in the field of databases and data mining. It offers a guide to fuzzy information processing in databases"--Provided by publisher.

Computational Intelligence for Information Retrieval

Computational Intelligence for Information Retrieval PDF Author: Dharmender Saini
Publisher: CRC Press
ISBN: 1000484718
Category : Technology & Engineering
Languages : en
Pages : 292

Book Description
This book provides a thorough understanding of the integration of computational intelligence with information retrieval including content-based image retrieval using intelligent techniques, hybrid computational intelligence for pattern recognition, intelligent innovative systems, and protecting and analysing big data on cloud platforms. The book aims to investigate how computational intelligence frameworks are going to improve information retrieval systems. The emerging and promising state-of-the-art of human–computer interaction is the motivation behind this book. The book covers a wide range of topics, starting from the tools and languages of artificial intelligence to its philosophical implications, and thus provides a plethora of theoretical as well as experimental research, along with surveys and impact studies. Further, the book aims to showcase the basics of information retrieval and computational intelligence for beginners, as well as their integration, and challenge discussions for existing practitioners, including using hybrid application of augmented reality, computational intelligence techniques for recommendation systems in big data, and a fuzzy-based approach for characterization and identification of sentiments.

Fuzzy Logic and its Applications to Engineering, Information Sciences, and Intelligent Systems

Fuzzy Logic and its Applications to Engineering, Information Sciences, and Intelligent Systems PDF Author: Zeungnam Bien
Publisher: Springer Science & Business Media
ISBN: 9400901259
Category : Mathematics
Languages : en
Pages : 472

Book Description
Fuzzy technology has emerged as one of the most exciting new concepts available. Fuzzy Logic and its Applications... covers a wide range of the theory and applications of fuzzy logic and related systems, including industrial applications of fuzzy technology, implementing human intelligence in machines and systems. There are four main themes: intelligent systems, engineering, mathematical foundations, and information sciences. Both academics and the technical community will learn how and why fuzzy logic is appreciated in the conceptual, design and manufacturing stages of intelligent systems, gaining an improved understanding of the basic science and the foundations of human reasoning.

Fuzzy Sets in Approximate Reasoning and Information Systems

Fuzzy Sets in Approximate Reasoning and Information Systems PDF Author: J.C. Bezdek
Publisher: Springer Science & Business Media
ISBN: 1461552435
Category : Mathematics
Languages : en
Pages : 527

Book Description
Approximate reasoning is a key motivation in fuzzy sets and possibility theory. This volume provides a coherent view of this field, and its impact on database research and information retrieval. First, the semantic foundations of approximate reasoning are presented. Special emphasis is given to the representation of fuzzy rules and specialized types of approximate reasoning. Then syntactic aspects of approximate reasoning are surveyed and the algebraic underpinnings of fuzzy consequence relations are presented and explained. The second part of the book is devoted to inductive and neuro-fuzzy methods for learning fuzzy rules. It also contains new material on the application of possibility theory to data fusion. The last part of the book surveys the growing literature on fuzzy information systems. Each chapter contains extensive bibliographical material. Fuzzy Sets in Approximate Reasoning and Information Systems is a major source of information for research scholars and graduate students in computer science and artificial intelligence, interested in human information processing.

Mathematical Foundations of Information Retrieval

Mathematical Foundations of Information Retrieval PDF Author: S. Dominich
Publisher: Springer Science & Business Media
ISBN: 9401007527
Category : Computers
Languages : en
Pages : 300

Book Description
This book offers a comprehensive and consistent mathematical approach to information retrieval (IR) without which no implementation is possible, and sheds an entirely new light upon the structure of IR models. It contains the descriptions of all IR models in a unified formal style and language, along with examples for each, thus offering a comprehensive overview of them. The book also creates mathematical foundations and a consistent mathematical theory (including all mathematical results achieved so far) of IR as a stand-alone mathematical discipline, which thus can be read and taught independently. Also, the book contains all necessary mathematical knowledge on which IR relies, to help the reader avoid searching different sources. Audience: The book will be of interest to computer or information scientists, librarians, mathematicians, undergraduate students and researchers whose work involves information retrieval.