Author: Erdal Kayacan
Publisher: Butterworth-Heinemann
ISBN: 0128027037
Category : Mathematics
Languages : en
Pages : 266
Book Description
AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: • Gradient descent • Levenberg-Marquardt • Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully. - Parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis - Contains algorithms that are applicable to real time systems - Introduces fast and simple adaptation rules for type-1 and type-2 fuzzy neural networks - Number of case studies both in identification and control - Provides MATLAB® codes for some algorithms in the book
Fuzzy Neural Networks for Real Time Control Applications
Author: Erdal Kayacan
Publisher: Butterworth-Heinemann
ISBN: 0128027037
Category : Mathematics
Languages : en
Pages : 266
Book Description
AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: • Gradient descent • Levenberg-Marquardt • Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully. - Parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis - Contains algorithms that are applicable to real time systems - Introduces fast and simple adaptation rules for type-1 and type-2 fuzzy neural networks - Number of case studies both in identification and control - Provides MATLAB® codes for some algorithms in the book
Publisher: Butterworth-Heinemann
ISBN: 0128027037
Category : Mathematics
Languages : en
Pages : 266
Book Description
AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: • Gradient descent • Levenberg-Marquardt • Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully. - Parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis - Contains algorithms that are applicable to real time systems - Introduces fast and simple adaptation rules for type-1 and type-2 fuzzy neural networks - Number of case studies both in identification and control - Provides MATLAB® codes for some algorithms in the book
Fuzzy Control
Author: Kevin M. Passino
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 506
Book Description
Introduction; Fuzzy control: the basics; Case studies in design and implementation; nonlinear analysis; Fuzzy identification and estimation; Adaptive fuzzy control; Fuzzy supervisory control; Perspectives on fuzzy control.
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 506
Book Description
Introduction; Fuzzy control: the basics; Case studies in design and implementation; nonlinear analysis; Fuzzy identification and estimation; Adaptive fuzzy control; Fuzzy supervisory control; Perspectives on fuzzy control.
Fuzzy Control Systems
Author: Abraham Kandel
Publisher: CRC Press
ISBN: 9780849344961
Category : Computers
Languages : en
Pages : 664
Book Description
Fuzzy Control Systems explores one of the most active areas of research involving fuzzy set theory. The contributors address basic issues concerning the analysis, design, and application of fuzzy control systems. Divided into three parts, the book first devotes itself to the general theory of fuzzy control systems. The second part deals with a variety of methodologies and algorithms used in the analysis and design of fuzzy controllers. The various paradigms include fuzzy reasoning models, fuzzy neural networks, fuzzy expert systems, and genetic algorithms. The final part considers current applications of fuzzy control systems. This book should be required reading for researchers, practitioners, and students interested in fuzzy control systems, artificial intelligence, and fuzzy sets and systems.
Publisher: CRC Press
ISBN: 9780849344961
Category : Computers
Languages : en
Pages : 664
Book Description
Fuzzy Control Systems explores one of the most active areas of research involving fuzzy set theory. The contributors address basic issues concerning the analysis, design, and application of fuzzy control systems. Divided into three parts, the book first devotes itself to the general theory of fuzzy control systems. The second part deals with a variety of methodologies and algorithms used in the analysis and design of fuzzy controllers. The various paradigms include fuzzy reasoning models, fuzzy neural networks, fuzzy expert systems, and genetic algorithms. The final part considers current applications of fuzzy control systems. This book should be required reading for researchers, practitioners, and students interested in fuzzy control systems, artificial intelligence, and fuzzy sets and systems.
Intelligent Control
Author: Nazmul Siddique
Publisher: Springer
ISBN: 3319021354
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of the fuzzy controller is then described and finally an evolutionary algorithm is applied to the neurally-tuned-fuzzy controller in which the sigmoidal function shape of the neural network is determined. The important issue of stability is addressed and the text demonstrates empirically that the developed controller was stable within the operating range. The text concludes with ideas for future research to show the reader the potential for further study in this area. Intelligent Control will be of interest to researchers from engineering and computer science backgrounds working in the intelligent and adaptive control.
Publisher: Springer
ISBN: 3319021354
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of the fuzzy controller is then described and finally an evolutionary algorithm is applied to the neurally-tuned-fuzzy controller in which the sigmoidal function shape of the neural network is determined. The important issue of stability is addressed and the text demonstrates empirically that the developed controller was stable within the operating range. The text concludes with ideas for future research to show the reader the potential for further study in this area. Intelligent Control will be of interest to researchers from engineering and computer science backgrounds working in the intelligent and adaptive control.
Fuzzy-neural Control
Author: Junhong Nie
Publisher: Prentice Hall PTR
ISBN:
Category : Computers
Languages : en
Pages : 262
Book Description
Illustrating how fuzzy logic and neural networks can be integrated into a model reference control context for real-time control of multivariable systems, this book provides an architecture which accommodates several popular learning/reasoning paradigms.
Publisher: Prentice Hall PTR
ISBN:
Category : Computers
Languages : en
Pages : 262
Book Description
Illustrating how fuzzy logic and neural networks can be integrated into a model reference control context for real-time control of multivariable systems, this book provides an architecture which accommodates several popular learning/reasoning paradigms.
Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers By Lotfi A Zadeh
Author: George J Klir
Publisher: World Scientific
ISBN: 9814499811
Category : Computers
Languages : en
Pages : 842
Book Description
This book consists of selected papers written by the founder of fuzzy set theory, Lotfi A Zadeh. Since Zadeh is not only the founder of this field, but has also been the principal contributor to its development over the last 30 years, the papers contain virtually all the major ideas in fuzzy set theory, fuzzy logic, and fuzzy systems in their historical context. Many of the ideas presented in the papers are still open to further development. The book is thus an important resource for anyone interested in the areas of fuzzy set theory, fuzzy logic, and fuzzy systems, as well as their applications. Moreover, the book is also intended to play a useful role in higher education, as a rich source of supplementary reading in relevant courses and seminars.The book contains a bibliography of all papers published by Zadeh in the period 1949-1995. It also contains an introduction that traces the development of Zadeh's ideas pertaining to fuzzy sets, fuzzy logic, and fuzzy systems via his papers. The ideas range from his 1965 seminal idea of the concept of a fuzzy set to ideas reflecting his current interest in computing with words — a computing in which linguistic expressions are used in place of numbers.Places in the papers, where each idea is presented can easily be found by the reader via the Subject Index.
Publisher: World Scientific
ISBN: 9814499811
Category : Computers
Languages : en
Pages : 842
Book Description
This book consists of selected papers written by the founder of fuzzy set theory, Lotfi A Zadeh. Since Zadeh is not only the founder of this field, but has also been the principal contributor to its development over the last 30 years, the papers contain virtually all the major ideas in fuzzy set theory, fuzzy logic, and fuzzy systems in their historical context. Many of the ideas presented in the papers are still open to further development. The book is thus an important resource for anyone interested in the areas of fuzzy set theory, fuzzy logic, and fuzzy systems, as well as their applications. Moreover, the book is also intended to play a useful role in higher education, as a rich source of supplementary reading in relevant courses and seminars.The book contains a bibliography of all papers published by Zadeh in the period 1949-1995. It also contains an introduction that traces the development of Zadeh's ideas pertaining to fuzzy sets, fuzzy logic, and fuzzy systems via his papers. The ideas range from his 1965 seminal idea of the concept of a fuzzy set to ideas reflecting his current interest in computing with words — a computing in which linguistic expressions are used in place of numbers.Places in the papers, where each idea is presented can easily be found by the reader via the Subject Index.
Fuzzy Modeling and Control
Author: Andrzej Piegat
Publisher: Physica
ISBN: 3790818240
Category : Computers
Languages : en
Pages : 737
Book Description
In the last ten years, a true explosion of investigations into fuzzy modeling and its applications in control, diagnostics, decision making, optimization, pattern recognition, robotics, etc. has been observed. The attraction of fuzzy modeling results from its intelligibility and the high effectiveness of the models obtained. Owing to this the modeling can be applied for the solution of problems which could not be solved till now with any known conventional methods. The book provides the reader with an advanced introduction to the problems of fuzzy modeling and to one of its most important applications: fuzzy control. It is based on the latest and most significant knowledge of the subject and can be used not only by control specialists but also by specialists working in any field requiring plant modeling, process modeling, and systems modeling, e.g. economics, business, medicine, agriculture,and meteorology.
Publisher: Physica
ISBN: 3790818240
Category : Computers
Languages : en
Pages : 737
Book Description
In the last ten years, a true explosion of investigations into fuzzy modeling and its applications in control, diagnostics, decision making, optimization, pattern recognition, robotics, etc. has been observed. The attraction of fuzzy modeling results from its intelligibility and the high effectiveness of the models obtained. Owing to this the modeling can be applied for the solution of problems which could not be solved till now with any known conventional methods. The book provides the reader with an advanced introduction to the problems of fuzzy modeling and to one of its most important applications: fuzzy control. It is based on the latest and most significant knowledge of the subject and can be used not only by control specialists but also by specialists working in any field requiring plant modeling, process modeling, and systems modeling, e.g. economics, business, medicine, agriculture,and meteorology.
Elements of Robotics
Author: Mordechai Ben-Ari
Publisher: Springer
ISBN: 3319625330
Category : Computers
Languages : en
Pages : 311
Book Description
This open access book bridges the gap between playing with robots in school and studying robotics at the upper undergraduate and graduate levels to prepare for careers in industry and research. Robotic algorithms are presented formally, but using only mathematics known by high-school and first-year college students, such as calculus, matrices and probability. Concepts and algorithms are explained through detailed diagrams and calculations. Elements of Robotics presents an overview of different types of robots and the components used to build robots, but focuses on robotic algorithms: simple algorithms like odometry and feedback control, as well as algorithms for advanced topics like localization, mapping, image processing, machine learning and swarm robotics. These algorithms are demonstrated in simplified contexts that enable detailed computations to be performed and feasible activities to be posed. Students who study these simplified demonstrations will be well prepared for advanced study of robotics. The algorithms are presented at a relatively abstract level, not tied to any specific robot. Instead a generic robot is defined that uses elements common to most educational robots: differential drive with two motors, proximity sensors and some method of displaying output to the user. The theory is supplemented with over 100 activities, most of which can be successfully implemented using inexpensive educational robots. Activities that require more computation can be programmed on a computer. Archives are available with suggested implementations for the Thymio robot and standalone programs in Python.
Publisher: Springer
ISBN: 3319625330
Category : Computers
Languages : en
Pages : 311
Book Description
This open access book bridges the gap between playing with robots in school and studying robotics at the upper undergraduate and graduate levels to prepare for careers in industry and research. Robotic algorithms are presented formally, but using only mathematics known by high-school and first-year college students, such as calculus, matrices and probability. Concepts and algorithms are explained through detailed diagrams and calculations. Elements of Robotics presents an overview of different types of robots and the components used to build robots, but focuses on robotic algorithms: simple algorithms like odometry and feedback control, as well as algorithms for advanced topics like localization, mapping, image processing, machine learning and swarm robotics. These algorithms are demonstrated in simplified contexts that enable detailed computations to be performed and feasible activities to be posed. Students who study these simplified demonstrations will be well prepared for advanced study of robotics. The algorithms are presented at a relatively abstract level, not tied to any specific robot. Instead a generic robot is defined that uses elements common to most educational robots: differential drive with two motors, proximity sensors and some method of displaying output to the user. The theory is supplemented with over 100 activities, most of which can be successfully implemented using inexpensive educational robots. Activities that require more computation can be programmed on a computer. Archives are available with suggested implementations for the Thymio robot and standalone programs in Python.
Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems
Author: Radu-Emil Precup
Publisher: Butterworth-Heinemann
ISBN: 0128163585
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
Nature-inspired Optimization Algorithms for Fuzzy Controlled Servo Systems explains fuzzy control in servo systems in a way that doesn't require any solid mathematical prerequisite. Analysis and design methodologies are covered, along with specific applications to servo systems and representative case studies. The theoretical approaches presented throughout the book are validated by the illustration of digital simulation and real-time experimental results. This book is a great resource for a wide variety of readers, including graduate students, engineers (designers, practitioners and researchers), and everyone who faces challenging control problems.
Publisher: Butterworth-Heinemann
ISBN: 0128163585
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
Nature-inspired Optimization Algorithms for Fuzzy Controlled Servo Systems explains fuzzy control in servo systems in a way that doesn't require any solid mathematical prerequisite. Analysis and design methodologies are covered, along with specific applications to servo systems and representative case studies. The theoretical approaches presented throughout the book are validated by the illustration of digital simulation and real-time experimental results. This book is a great resource for a wide variety of readers, including graduate students, engineers (designers, practitioners and researchers), and everyone who faces challenging control problems.
Fuzzy Controller Design
Author: Zdenko Kovacic
Publisher: CRC Press
ISBN: 142002650X
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Fuzzy control methods are critical for meeting the demands of complex nonlinear systems. They bestow robust, adaptive, and self-correcting character to complex systems that demand high stability and functionality beyond the capabilities of traditional methods. A thorough treatise on the theory of fuzzy logic control is out of place on the design bench. That is why Fuzzy Controller Design: Theory and Applications offers laboratory- and industry-tested algorithms, techniques, and formulations of real-world problems for immediate implementation. With surgical precision, the authors carefully select the fundamental elements of fuzzy logic control theory necessary to formulate effective and efficient designs. The book supplies a springboard of knowledge, punctuated with examples worked out in MATLAB®/SIMULINK®, from which newcomers to the field can dive directly into applications. It systematically covers the design of hybrid, adaptive, and self-learning fuzzy control structures along with strategies for fuzzy controller design suitable for on-line and off-line operation. Examples occupy an entire chapter, with a section devoted to the simulation of an electro-hydraulic servo system. The final chapter explores industrial applications with emphasis on techniques for fuzzy controller implementation and different implementation platforms for various applications. With proven methods based on more than a decade of experience, Fuzzy Controller Design: Theory and Applications is a concise guide to the methodology, design steps, and formulations for effective control solutions.
Publisher: CRC Press
ISBN: 142002650X
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Fuzzy control methods are critical for meeting the demands of complex nonlinear systems. They bestow robust, adaptive, and self-correcting character to complex systems that demand high stability and functionality beyond the capabilities of traditional methods. A thorough treatise on the theory of fuzzy logic control is out of place on the design bench. That is why Fuzzy Controller Design: Theory and Applications offers laboratory- and industry-tested algorithms, techniques, and formulations of real-world problems for immediate implementation. With surgical precision, the authors carefully select the fundamental elements of fuzzy logic control theory necessary to formulate effective and efficient designs. The book supplies a springboard of knowledge, punctuated with examples worked out in MATLAB®/SIMULINK®, from which newcomers to the field can dive directly into applications. It systematically covers the design of hybrid, adaptive, and self-learning fuzzy control structures along with strategies for fuzzy controller design suitable for on-line and off-line operation. Examples occupy an entire chapter, with a section devoted to the simulation of an electro-hydraulic servo system. The final chapter explores industrial applications with emphasis on techniques for fuzzy controller implementation and different implementation platforms for various applications. With proven methods based on more than a decade of experience, Fuzzy Controller Design: Theory and Applications is a concise guide to the methodology, design steps, and formulations for effective control solutions.