Author: Gevork B. Gharehpetian
Publisher: Elsevier
ISBN: 0443140901
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Future Power System Elements, Challenges, and Solutions synthesizes essential knowledge of power system challenges into a single volume. Ideal for researchers, engineers, and students in power systems, this book supports readers from initial understanding to design and implementation. This book begins with the fundamental history, policies, and long-term needs of a sustainable energy system. A detailed analysis helps evaluate the challenges specific to distribution, generation, and transmission systems, preparing readers to understand the criteria for strong solutions. The final chapters break down potential solutions for each area in turn, offering a chance to develop your own approach. Readers can build understanding of generation technologies from distributed generation to fuel cells, transmission systems including HVDC systems and FACTS devices, and distribution solutions from microgrids to Energy Storage Solutions (ESS). Providing in-depth analysis of the biggest challenges currently facing the industry, Future Power System Elements, Challenges, and Solutions enables researchers, industry engineers and students to generate solutions for the power systems of the future. - Provides a comprehensive overview of the current technologies and essential challenges in power system generation, transmission, and distribution - Builds skills, including coding approaches, enabling readers to design solutions for the biggest challenges in the industry today - Supports learning with questions and problems to reinforce understanding at the end of each chapter
Future Power System Elements, Challenges, and Solutions
Author: Gevork B. Gharehpetian
Publisher: Elsevier
ISBN: 0443140901
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Future Power System Elements, Challenges, and Solutions synthesizes essential knowledge of power system challenges into a single volume. Ideal for researchers, engineers, and students in power systems, this book supports readers from initial understanding to design and implementation. This book begins with the fundamental history, policies, and long-term needs of a sustainable energy system. A detailed analysis helps evaluate the challenges specific to distribution, generation, and transmission systems, preparing readers to understand the criteria for strong solutions. The final chapters break down potential solutions for each area in turn, offering a chance to develop your own approach. Readers can build understanding of generation technologies from distributed generation to fuel cells, transmission systems including HVDC systems and FACTS devices, and distribution solutions from microgrids to Energy Storage Solutions (ESS). Providing in-depth analysis of the biggest challenges currently facing the industry, Future Power System Elements, Challenges, and Solutions enables researchers, industry engineers and students to generate solutions for the power systems of the future. - Provides a comprehensive overview of the current technologies and essential challenges in power system generation, transmission, and distribution - Builds skills, including coding approaches, enabling readers to design solutions for the biggest challenges in the industry today - Supports learning with questions and problems to reinforce understanding at the end of each chapter
Publisher: Elsevier
ISBN: 0443140901
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Future Power System Elements, Challenges, and Solutions synthesizes essential knowledge of power system challenges into a single volume. Ideal for researchers, engineers, and students in power systems, this book supports readers from initial understanding to design and implementation. This book begins with the fundamental history, policies, and long-term needs of a sustainable energy system. A detailed analysis helps evaluate the challenges specific to distribution, generation, and transmission systems, preparing readers to understand the criteria for strong solutions. The final chapters break down potential solutions for each area in turn, offering a chance to develop your own approach. Readers can build understanding of generation technologies from distributed generation to fuel cells, transmission systems including HVDC systems and FACTS devices, and distribution solutions from microgrids to Energy Storage Solutions (ESS). Providing in-depth analysis of the biggest challenges currently facing the industry, Future Power System Elements, Challenges, and Solutions enables researchers, industry engineers and students to generate solutions for the power systems of the future. - Provides a comprehensive overview of the current technologies and essential challenges in power system generation, transmission, and distribution - Builds skills, including coding approaches, enabling readers to design solutions for the biggest challenges in the industry today - Supports learning with questions and problems to reinforce understanding at the end of each chapter
Enhancing the Resilience of the Nation's Electricity System
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309463076
Category : Science
Languages : en
Pages : 171
Book Description
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.
Publisher: National Academies Press
ISBN: 0309463076
Category : Science
Languages : en
Pages : 171
Book Description
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.
The Power of Change
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309371422
Category : Science
Languages : en
Pages : 341
Book Description
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
Publisher: National Academies Press
ISBN: 0309371422
Category : Science
Languages : en
Pages : 341
Book Description
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
Pathways to a Smarter Power System
Author: Ozan Erdinc
Publisher: Academic Press
ISBN: 0081025939
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
Pathways to a Smarter Power System studies different concepts within smart grids that are used in both industry and system regulators (e.g. distribution and transmission system operators) and research. This book covers these concepts from multiple perspectives and in multiple contexts, presenting detailed technical information on renewable energy systems, distributed generation and energy storage units, methods to activate the demand side of power systems, market structure needs, and advanced planning concepts and new operational requirements, specifically for power system protection, technological evolvements, and requirements regarding technology in ICT, power electronics and control areas. This book provides energy researchers and engineers with an indispensable guide on how to apply wider perspectives to the different technological and conceptual requirements of a smarter power system. - Includes concepts regarding conceptual and technological needs and investment planning suggestions for smart grid enabling strategies - Contains new electric power system operational concepts required by industry, along with R&D studies addressing new solutions to potential operational problems - Covers pathways to smarter power systems from successful existing examples to expected short, medium and long-term possibilities
Publisher: Academic Press
ISBN: 0081025939
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
Pathways to a Smarter Power System studies different concepts within smart grids that are used in both industry and system regulators (e.g. distribution and transmission system operators) and research. This book covers these concepts from multiple perspectives and in multiple contexts, presenting detailed technical information on renewable energy systems, distributed generation and energy storage units, methods to activate the demand side of power systems, market structure needs, and advanced planning concepts and new operational requirements, specifically for power system protection, technological evolvements, and requirements regarding technology in ICT, power electronics and control areas. This book provides energy researchers and engineers with an indispensable guide on how to apply wider perspectives to the different technological and conceptual requirements of a smarter power system. - Includes concepts regarding conceptual and technological needs and investment planning suggestions for smart grid enabling strategies - Contains new electric power system operational concepts required by industry, along with R&D studies addressing new solutions to potential operational problems - Covers pathways to smarter power systems from successful existing examples to expected short, medium and long-term possibilities
Classical and Recent Aspects of Power System Optimization
Author: Ahmed F. Zobaa
Publisher: Academic Press
ISBN: 0128124423
Category : Technology & Engineering
Languages : en
Pages : 588
Book Description
Classical and Recent Aspects of Power System Optimization presents conventional and meta-heuristic optimization methods and algorithms for power system studies. The classic aspects of optimization in power systems, such as optimal power flow, economic dispatch, unit commitment and power quality optimization are covered, as are issues relating to distributed generation sizing, allocation problems, scheduling of renewable resources, energy storage, power reserve based problems, efficient use of smart grid capabilities, and protection studies in modern power systems. The book brings together innovative research outcomes, programs, algorithms and approaches that consolidate the present state and future challenges for power. - Analyzes and compares several aspects of optimization for power systems which has never been addressed in one reference - Details real-life industry application examples for each chapter (e.g. energy storage and power reserve problems) - Provides practical training on theoretical developments and application of advanced methods for optimum electrical energy for realistic engineering problems
Publisher: Academic Press
ISBN: 0128124423
Category : Technology & Engineering
Languages : en
Pages : 588
Book Description
Classical and Recent Aspects of Power System Optimization presents conventional and meta-heuristic optimization methods and algorithms for power system studies. The classic aspects of optimization in power systems, such as optimal power flow, economic dispatch, unit commitment and power quality optimization are covered, as are issues relating to distributed generation sizing, allocation problems, scheduling of renewable resources, energy storage, power reserve based problems, efficient use of smart grid capabilities, and protection studies in modern power systems. The book brings together innovative research outcomes, programs, algorithms and approaches that consolidate the present state and future challenges for power. - Analyzes and compares several aspects of optimization for power systems which has never been addressed in one reference - Details real-life industry application examples for each chapter (e.g. energy storage and power reserve problems) - Provides practical training on theoretical developments and application of advanced methods for optimum electrical energy for realistic engineering problems
Electric Power System Planning
Author: Hossein Seifi
Publisher: Springer Science & Business Media
ISBN: 3642179894
Category : Technology & Engineering
Languages : en
Pages : 379
Book Description
The present book addresses various power system planning issues for professionals as well as senior level and postgraduate students. Its emphasis is on long-term issues, although much of the ideas may be used for short and mid-term cases, with some modifications. Back-up materials are provided in twelve appendices of the book. The readers can use the numerous examples presented within the chapters and problems at the end of the chapters, to make sure that the materials are adequately followed up. Based on what Matlab provides as a powerful package for students and professional, some of the examples and the problems are solved in using M-files especially developed and attached for this purpose. This adds a unique feature to the book for in-depth understanding of the materials, sometimes, difficult to apprehend mathematically. Chapter 1 provides an introduction to Power System Planning (PSP) issues and basic principles. As most of PSP problems are modeled as optimization problems, optimization techniques are covered in some details in Chapter 2. Moreover, PSP decision makings are based on both technical and economic considerations, so economic principles are briefly reviewed in Chapter 3. As a basic requirement of PSP studies, the load has to be known. Therefore, load forecasting is presented in Chapter 4. Single bus Generation Expansion Planning (GEP) problem is described in Chapter 5. This study is performed using WASP-IV, developed by International Atomic Energy Agency. The study ignores the grid structure. A Multi-bus GEP problem is discussed in Chapter 6 in which the transmission effects are, somehow, accounted for. The results of single bus GEP is used as an input to this problem. SEP problem is fully presented in Chapter 7. Chapter 8 devotes to Network Expansion Planning (NEP) problem, in which the network is planned. The results of NEP, somehow, fixes the network structure. Some practical considerations and improvements such as multi-voltage cases are discussed in Chapter 9. As NEP study is typically based on some simplifying assumptions and Direct Current Load Flow (DCLF) analysis, detailed Reactive Power Planning (RPP) study is finally presented in Chapter 10, to guarantee acceptable ACLF performance during normal as well as contingency conditions. This, somehow, concludes the basic PSP problem. The changing environments due to power system restructuring dictate some uncertainties on PSP issues. It is shown in Chapter 11 that how these uncertainties can be accounted for. Although is intended to be a text book, PSP is a research oriented topic, too. That is why Chapter 12 is devoted to research trends in PSP. The chapters conclude with a comprehensive example in Chapter 13, showing the step-by-step solution of a practical case.
Publisher: Springer Science & Business Media
ISBN: 3642179894
Category : Technology & Engineering
Languages : en
Pages : 379
Book Description
The present book addresses various power system planning issues for professionals as well as senior level and postgraduate students. Its emphasis is on long-term issues, although much of the ideas may be used for short and mid-term cases, with some modifications. Back-up materials are provided in twelve appendices of the book. The readers can use the numerous examples presented within the chapters and problems at the end of the chapters, to make sure that the materials are adequately followed up. Based on what Matlab provides as a powerful package for students and professional, some of the examples and the problems are solved in using M-files especially developed and attached for this purpose. This adds a unique feature to the book for in-depth understanding of the materials, sometimes, difficult to apprehend mathematically. Chapter 1 provides an introduction to Power System Planning (PSP) issues and basic principles. As most of PSP problems are modeled as optimization problems, optimization techniques are covered in some details in Chapter 2. Moreover, PSP decision makings are based on both technical and economic considerations, so economic principles are briefly reviewed in Chapter 3. As a basic requirement of PSP studies, the load has to be known. Therefore, load forecasting is presented in Chapter 4. Single bus Generation Expansion Planning (GEP) problem is described in Chapter 5. This study is performed using WASP-IV, developed by International Atomic Energy Agency. The study ignores the grid structure. A Multi-bus GEP problem is discussed in Chapter 6 in which the transmission effects are, somehow, accounted for. The results of single bus GEP is used as an input to this problem. SEP problem is fully presented in Chapter 7. Chapter 8 devotes to Network Expansion Planning (NEP) problem, in which the network is planned. The results of NEP, somehow, fixes the network structure. Some practical considerations and improvements such as multi-voltage cases are discussed in Chapter 9. As NEP study is typically based on some simplifying assumptions and Direct Current Load Flow (DCLF) analysis, detailed Reactive Power Planning (RPP) study is finally presented in Chapter 10, to guarantee acceptable ACLF performance during normal as well as contingency conditions. This, somehow, concludes the basic PSP problem. The changing environments due to power system restructuring dictate some uncertainties on PSP issues. It is shown in Chapter 11 that how these uncertainties can be accounted for. Although is intended to be a text book, PSP is a research oriented topic, too. That is why Chapter 12 is devoted to research trends in PSP. The chapters conclude with a comprehensive example in Chapter 13, showing the step-by-step solution of a practical case.
Smart Energy Grid Engineering
Author: Hossam Gabbar
Publisher: Academic Press
ISBN: 0128092327
Category : Technology & Engineering
Languages : en
Pages : 570
Book Description
Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. - Includes detailed support to integrate systems for smart grid infrastructures - Features global case studies outlining design components and their integration within the grid - Provides examples and best practices from industry that will assist in the migration to smart grids
Publisher: Academic Press
ISBN: 0128092327
Category : Technology & Engineering
Languages : en
Pages : 570
Book Description
Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. - Includes detailed support to integrate systems for smart grid infrastructures - Features global case studies outlining design components and their integration within the grid - Provides examples and best practices from industry that will assist in the migration to smart grids
Terrorism and the Electric Power Delivery System
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309114047
Category : Political Science
Languages : en
Pages : 165
Book Description
The electric power delivery system that carries electricity from large central generators to customers could be severely damaged by a small number of well-informed attackers. The system is inherently vulnerable because transmission lines may span hundreds of miles, and many key facilities are unguarded. This vulnerability is exacerbated by the fact that the power grid, most of which was originally designed to meet the needs of individual vertically integrated utilities, is being used to move power between regions to support the needs of competitive markets for power generation. Primarily because of ambiguities introduced as a result of recent restricting the of the industry and cost pressures from consumers and regulators, investment to strengthen and upgrade the grid has lagged, with the result that many parts of the bulk high-voltage system are heavily stressed. Electric systems are not designed to withstand or quickly recover from damage inflicted simultaneously on multiple components. Such an attack could be carried out by knowledgeable attackers with little risk of detection or interdiction. Further well-planned and coordinated attacks by terrorists could leave the electric power system in a large region of the country at least partially disabled for a very long time. Although there are many examples of terrorist and military attacks on power systems elsewhere in the world, at the time of this study international terrorists have shown limited interest in attacking the U.S. power grid. However, that should not be a basis for complacency. Because all parts of the economy, as well as human health and welfare, depend on electricity, the results could be devastating. Terrorism and the Electric Power Delivery System focuses on measures that could make the power delivery system less vulnerable to attacks, restore power faster after an attack, and make critical services less vulnerable while the delivery of conventional electric power has been disrupted.
Publisher: National Academies Press
ISBN: 0309114047
Category : Political Science
Languages : en
Pages : 165
Book Description
The electric power delivery system that carries electricity from large central generators to customers could be severely damaged by a small number of well-informed attackers. The system is inherently vulnerable because transmission lines may span hundreds of miles, and many key facilities are unguarded. This vulnerability is exacerbated by the fact that the power grid, most of which was originally designed to meet the needs of individual vertically integrated utilities, is being used to move power between regions to support the needs of competitive markets for power generation. Primarily because of ambiguities introduced as a result of recent restricting the of the industry and cost pressures from consumers and regulators, investment to strengthen and upgrade the grid has lagged, with the result that many parts of the bulk high-voltage system are heavily stressed. Electric systems are not designed to withstand or quickly recover from damage inflicted simultaneously on multiple components. Such an attack could be carried out by knowledgeable attackers with little risk of detection or interdiction. Further well-planned and coordinated attacks by terrorists could leave the electric power system in a large region of the country at least partially disabled for a very long time. Although there are many examples of terrorist and military attacks on power systems elsewhere in the world, at the time of this study international terrorists have shown limited interest in attacking the U.S. power grid. However, that should not be a basis for complacency. Because all parts of the economy, as well as human health and welfare, depend on electricity, the results could be devastating. Terrorism and the Electric Power Delivery System focuses on measures that could make the power delivery system less vulnerable to attacks, restore power faster after an attack, and make critical services less vulnerable while the delivery of conventional electric power has been disrupted.
Handbook on Battery Energy Storage System
Author: Asian Development Bank
Publisher: Asian Development Bank
ISBN: 9292614711
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.
Publisher: Asian Development Bank
ISBN: 9292614711
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.
Transmission Expansion Planning: The Network Challenges of the Energy Transition
Author: Sara Lumbreras
Publisher: Springer Nature
ISBN: 3030494284
Category : Technology & Engineering
Languages : en
Pages : 311
Book Description
This book presents a panoramic look at the transformation of the transmission network in the context of the energy transition. It provides readers with basic definitions as well as details on current challenges and emerging technologies. In-depth chapters cover the integration of renewables, the particularities of planning large-scale systems, efficient reduction and solution methods, the possibilities of HVDC and super grids, distributed generation, smart grids, demand response, and new regulatory schemes. The content is complemented with case studies that highlight the importance of the power transmission network as the backbone of modern energy systems. This book will be a comprehensive reference that will be useful to both academics and practitioners.
Publisher: Springer Nature
ISBN: 3030494284
Category : Technology & Engineering
Languages : en
Pages : 311
Book Description
This book presents a panoramic look at the transformation of the transmission network in the context of the energy transition. It provides readers with basic definitions as well as details on current challenges and emerging technologies. In-depth chapters cover the integration of renewables, the particularities of planning large-scale systems, efficient reduction and solution methods, the possibilities of HVDC and super grids, distributed generation, smart grids, demand response, and new regulatory schemes. The content is complemented with case studies that highlight the importance of the power transmission network as the backbone of modern energy systems. This book will be a comprehensive reference that will be useful to both academics and practitioners.