Author: B. Brunelli
Publisher: Springer Science & Business Media
ISBN: 1475759304
Category : Science
Languages : en
Pages : 286
Book Description
The International School of Fusion Reactor Technology started its courses 15 years ago and since then has mantained a biennial pace. Generally, each course has developed the subject which was announced in advance at the closing of the previous course. The subject to which the present proceedings refer was chosen in violation of that rule so as to satisfy the recent and diffuse interest in cold fusion among the main European laboratories involved in controlled thermonuclear research (CTR). In the second half of 1986 we started to prepare a workshop aimed at assessing the state of the art and possibly of the perspectives of muon- catalyzed fusion. Research in this field has recently produced exciting experimental results open to important practical applications. We thought it worthwhile to consider also the beneficial effects and problems of the polarization ofthe nuclei in both cold and thermonuclear fusion. In preparing the 8th Course on Fusion Reactor Technology, it was necessary to abandon the traditional course format because the influence of the workshop procedure was inevitable: the participants were roughly equally divided into experts in cold fusion and experts in thermonuclear fusion. The course had largely an interdisciplinary character as many disciplines were involved: atomic and molecular physics, nuclear physics, accelerator technology, system analysis, etc. Plasma physics was excluded, with a sigh of relief from the experts in thermonuclear fusion.
Muon-Catalyzed Fusion and Fusion with Polarized Nuclei
Author: B. Brunelli
Publisher: Springer Science & Business Media
ISBN: 1475759304
Category : Science
Languages : en
Pages : 286
Book Description
The International School of Fusion Reactor Technology started its courses 15 years ago and since then has mantained a biennial pace. Generally, each course has developed the subject which was announced in advance at the closing of the previous course. The subject to which the present proceedings refer was chosen in violation of that rule so as to satisfy the recent and diffuse interest in cold fusion among the main European laboratories involved in controlled thermonuclear research (CTR). In the second half of 1986 we started to prepare a workshop aimed at assessing the state of the art and possibly of the perspectives of muon- catalyzed fusion. Research in this field has recently produced exciting experimental results open to important practical applications. We thought it worthwhile to consider also the beneficial effects and problems of the polarization ofthe nuclei in both cold and thermonuclear fusion. In preparing the 8th Course on Fusion Reactor Technology, it was necessary to abandon the traditional course format because the influence of the workshop procedure was inevitable: the participants were roughly equally divided into experts in cold fusion and experts in thermonuclear fusion. The course had largely an interdisciplinary character as many disciplines were involved: atomic and molecular physics, nuclear physics, accelerator technology, system analysis, etc. Plasma physics was excluded, with a sigh of relief from the experts in thermonuclear fusion.
Publisher: Springer Science & Business Media
ISBN: 1475759304
Category : Science
Languages : en
Pages : 286
Book Description
The International School of Fusion Reactor Technology started its courses 15 years ago and since then has mantained a biennial pace. Generally, each course has developed the subject which was announced in advance at the closing of the previous course. The subject to which the present proceedings refer was chosen in violation of that rule so as to satisfy the recent and diffuse interest in cold fusion among the main European laboratories involved in controlled thermonuclear research (CTR). In the second half of 1986 we started to prepare a workshop aimed at assessing the state of the art and possibly of the perspectives of muon- catalyzed fusion. Research in this field has recently produced exciting experimental results open to important practical applications. We thought it worthwhile to consider also the beneficial effects and problems of the polarization ofthe nuclei in both cold and thermonuclear fusion. In preparing the 8th Course on Fusion Reactor Technology, it was necessary to abandon the traditional course format because the influence of the workshop procedure was inevitable: the participants were roughly equally divided into experts in cold fusion and experts in thermonuclear fusion. The course had largely an interdisciplinary character as many disciplines were involved: atomic and molecular physics, nuclear physics, accelerator technology, system analysis, etc. Plasma physics was excluded, with a sigh of relief from the experts in thermonuclear fusion.
Nuclear Fusion with Polarized Fuel
Author: Giuseppe Ciullo
Publisher: Springer
ISBN: 3319394711
Category : Science
Languages : en
Pages : 166
Book Description
This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetings “Nuclear Fusion with Polarized Nucleons” (Trento, November 2013) and “PolFusion” (Ferrara, July 2015).
Publisher: Springer
ISBN: 3319394711
Category : Science
Languages : en
Pages : 166
Book Description
This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetings “Nuclear Fusion with Polarized Nucleons” (Trento, November 2013) and “PolFusion” (Ferrara, July 2015).
Physics of Plasma-Wall Interactions in Controlled Fusion
Author: D. E. Post
Publisher: Springer Science & Business Media
ISBN: 1475700679
Category : Science
Languages : en
Pages : 1178
Book Description
Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro mising scheme to confine such a plasma is the use of i~tense mag netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall atoms are released and can enter the plasma. These wall atoms or impurities can deteriorate the plasma performance due to enhanced energy losses through radiation and an increase of the required magnetic pressure or a dilution of the fuel in the plasma. Finally, the impact of the plasma and energy on the wall can modify and deteriorate the thermal and mechanical pro perties of the vessel walls.
Publisher: Springer Science & Business Media
ISBN: 1475700679
Category : Science
Languages : en
Pages : 1178
Book Description
Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro mising scheme to confine such a plasma is the use of i~tense mag netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall atoms are released and can enter the plasma. These wall atoms or impurities can deteriorate the plasma performance due to enhanced energy losses through radiation and an increase of the required magnetic pressure or a dilution of the fuel in the plasma. Finally, the impact of the plasma and energy on the wall can modify and deteriorate the thermal and mechanical pro perties of the vessel walls.
Fusion Energy Update
Plasma Physics and Controlled Nuclear Fusion Research, 1982
Plasma Physics and Controlled Nuclear Fusion Research
Energy Research Abstracts
The Physics of Inertial Fusion
Author: Stefano Atzeni
Publisher: OUP Oxford
ISBN: 9780191524059
Category : Science
Languages : en
Pages : 488
Book Description
This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fundamental research or applications to fusion energy or novel ultra-bright laser sources. The book combines quite different areas of physics: beam target interaction, dense plasmas, hydrodynamic implosion and instabilities, radiative energy transfer as well as fusion reactions. Particular attention is given to simple and useful modelling, including dimensional analysis and similarity solutions. Both authors have worked in this field for more than 20 years. They want to address in particular those teaching this topic to students and all those interested in understanding the technical basis.
Publisher: OUP Oxford
ISBN: 9780191524059
Category : Science
Languages : en
Pages : 488
Book Description
This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fundamental research or applications to fusion energy or novel ultra-bright laser sources. The book combines quite different areas of physics: beam target interaction, dense plasmas, hydrodynamic implosion and instabilities, radiative energy transfer as well as fusion reactions. Particular attention is given to simple and useful modelling, including dimensional analysis and similarity solutions. Both authors have worked in this field for more than 20 years. They want to address in particular those teaching this topic to students and all those interested in understanding the technical basis.
Nuclear Fusion And Plasma Physics - Proceedings Of The International Summer School
Author: Y P Huo
Publisher: World Scientific
ISBN: 9814549665
Category :
Languages : en
Pages : 459
Book Description
The lectures given in the Summer School covered most of the important topics in controlled nuclear fusion and high temperature plasma physics. The topics are as follows: tokamak research, stellarator physics, transport and confinement of high temperature plasma, plasma-wall interaction and edge plasma physics, heating and current drive, diagnostics and general plasma theory.
Publisher: World Scientific
ISBN: 9814549665
Category :
Languages : en
Pages : 459
Book Description
The lectures given in the Summer School covered most of the important topics in controlled nuclear fusion and high temperature plasma physics. The topics are as follows: tokamak research, stellarator physics, transport and confinement of high temperature plasma, plasma-wall interaction and edge plasma physics, heating and current drive, diagnostics and general plasma theory.
Polarization Theory of Nuclear Reactions
Author: Qing-Biao Shen
Publisher: Springer Nature
ISBN: 3031118782
Category : Science
Languages : en
Pages : 743
Book Description
This book provides the reader with a modern and comprehensive overview of nuclear polarization theory. The understanding of polarization phenomena greatly enriches data obtained from scattering and nuclear reactions by providing information on the interaction that can change spin orientation as well as important verification data for the study of nuclear structures and reaction mechanisms. The author methodically derives the polarization theory of nuclear reactions for various types of elastic scattering and two-body direct reactions between particles of different spin and unpolarized target nuclei with arbitrary spin, as well as the reactions between two polarized light particles and the polarization theory for photon beams. In addition, the polarization theories of relativistic nuclear reactions are rigorously covered in great scope and detail. A chapter on polarized particle transport theory presents the Monte-Carlo method for describing the transport of polarized particles and formalizes the polarized particle transport equation. Here, the author also illustrates a novel and concrete scheme for establishing a polarization nuclear database. Nuclear polarization is important not only for microscopic nuclear structure and reaction studies but also for nuclear engineering, applied nuclear physics, and medical physics. With the development of radioactive beam facilities and, on the theoretical side, the development of consistent microscopic nuclear reaction and structure theories, this book on the polarization theory of nuclear reactions serves as a timely source of reference for students and researchers alike.
Publisher: Springer Nature
ISBN: 3031118782
Category : Science
Languages : en
Pages : 743
Book Description
This book provides the reader with a modern and comprehensive overview of nuclear polarization theory. The understanding of polarization phenomena greatly enriches data obtained from scattering and nuclear reactions by providing information on the interaction that can change spin orientation as well as important verification data for the study of nuclear structures and reaction mechanisms. The author methodically derives the polarization theory of nuclear reactions for various types of elastic scattering and two-body direct reactions between particles of different spin and unpolarized target nuclei with arbitrary spin, as well as the reactions between two polarized light particles and the polarization theory for photon beams. In addition, the polarization theories of relativistic nuclear reactions are rigorously covered in great scope and detail. A chapter on polarized particle transport theory presents the Monte-Carlo method for describing the transport of polarized particles and formalizes the polarized particle transport equation. Here, the author also illustrates a novel and concrete scheme for establishing a polarization nuclear database. Nuclear polarization is important not only for microscopic nuclear structure and reaction studies but also for nuclear engineering, applied nuclear physics, and medical physics. With the development of radioactive beam facilities and, on the theoretical side, the development of consistent microscopic nuclear reaction and structure theories, this book on the polarization theory of nuclear reactions serves as a timely source of reference for students and researchers alike.