Author: T. T. Soong
Publisher: John Wiley & Sons
ISBN: 0470868155
Category : Mathematics
Languages : en
Pages : 406
Book Description
This textbook differs from others in the field in that it has been prepared very much with students and their needs in mind, having been classroom tested over many years. It is a true “learner’s book” made for students who require a deeper understanding of probability and statistics. It presents the fundamentals of the subject along with concepts of probabilistic modelling, and the process of model selection, verification and analysis. Furthermore, the inclusion of more than 100 examples and 200 exercises (carefully selected from a wide range of topics), along with a solutions manual for instructors, means that this text is of real value to students and lecturers across a range of engineering disciplines. Key features: Presents the fundamentals in probability and statistics along with relevant applications. Explains the concept of probabilistic modelling and the process of model selection, verification and analysis. Definitions and theorems are carefully stated and topics rigorously treated. Includes a chapter on regression analysis. Covers design of experiments. Demonstrates practical problem solving throughout the book with numerous examples and exercises purposely selected from a variety of engineering fields. Includes an accompanying online Solutions Manual for instructors containing complete step-by-step solutions to all problems.
Fundamentals of Probability and Statistics for Engineers
Author: T. T. Soong
Publisher: John Wiley & Sons
ISBN: 0470868155
Category : Mathematics
Languages : en
Pages : 406
Book Description
This textbook differs from others in the field in that it has been prepared very much with students and their needs in mind, having been classroom tested over many years. It is a true “learner’s book” made for students who require a deeper understanding of probability and statistics. It presents the fundamentals of the subject along with concepts of probabilistic modelling, and the process of model selection, verification and analysis. Furthermore, the inclusion of more than 100 examples and 200 exercises (carefully selected from a wide range of topics), along with a solutions manual for instructors, means that this text is of real value to students and lecturers across a range of engineering disciplines. Key features: Presents the fundamentals in probability and statistics along with relevant applications. Explains the concept of probabilistic modelling and the process of model selection, verification and analysis. Definitions and theorems are carefully stated and topics rigorously treated. Includes a chapter on regression analysis. Covers design of experiments. Demonstrates practical problem solving throughout the book with numerous examples and exercises purposely selected from a variety of engineering fields. Includes an accompanying online Solutions Manual for instructors containing complete step-by-step solutions to all problems.
Publisher: John Wiley & Sons
ISBN: 0470868155
Category : Mathematics
Languages : en
Pages : 406
Book Description
This textbook differs from others in the field in that it has been prepared very much with students and their needs in mind, having been classroom tested over many years. It is a true “learner’s book” made for students who require a deeper understanding of probability and statistics. It presents the fundamentals of the subject along with concepts of probabilistic modelling, and the process of model selection, verification and analysis. Furthermore, the inclusion of more than 100 examples and 200 exercises (carefully selected from a wide range of topics), along with a solutions manual for instructors, means that this text is of real value to students and lecturers across a range of engineering disciplines. Key features: Presents the fundamentals in probability and statistics along with relevant applications. Explains the concept of probabilistic modelling and the process of model selection, verification and analysis. Definitions and theorems are carefully stated and topics rigorously treated. Includes a chapter on regression analysis. Covers design of experiments. Demonstrates practical problem solving throughout the book with numerous examples and exercises purposely selected from a variety of engineering fields. Includes an accompanying online Solutions Manual for instructors containing complete step-by-step solutions to all problems.
Fundamentals of Probability and Stochastic Processes with Applications to Communications
Author: Kun Il Park
Publisher: Springer
ISBN: 3319680757
Category : Technology & Engineering
Languages : en
Pages : 277
Book Description
This book provides engineers with focused treatment of the mathematics needed to understand probability, random variables, and stochastic processes, which are essential mathematical disciplines used in communications engineering. The author explains the basic concepts of these topics as plainly as possible so that people with no in-depth knowledge of these mathematical topics can better appreciate their applications in real problems. Applications examples are drawn from various areas of communications. If a reader is interested in understanding probability and stochastic processes that are specifically important for communications networks and systems, this book serves his/her need.
Publisher: Springer
ISBN: 3319680757
Category : Technology & Engineering
Languages : en
Pages : 277
Book Description
This book provides engineers with focused treatment of the mathematics needed to understand probability, random variables, and stochastic processes, which are essential mathematical disciplines used in communications engineering. The author explains the basic concepts of these topics as plainly as possible so that people with no in-depth knowledge of these mathematical topics can better appreciate their applications in real problems. Applications examples are drawn from various areas of communications. If a reader is interested in understanding probability and stochastic processes that are specifically important for communications networks and systems, this book serves his/her need.
Fundamentals of Applied Probability and Random Processes
Author: Oliver Ibe
Publisher: Academic Press
ISBN: 0128010355
Category : Mathematics
Languages : en
Pages : 457
Book Description
The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. - Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings - Expands readers' understanding of disruptive statistics in a new chapter (chapter 8) - Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. - Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).
Publisher: Academic Press
ISBN: 0128010355
Category : Mathematics
Languages : en
Pages : 457
Book Description
The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. - Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings - Expands readers' understanding of disruptive statistics in a new chapter (chapter 8) - Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. - Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).
Random Phenomena
Author: Babatunde A. Ogunnaike
Publisher: CRC Press
ISBN: 1420044982
Category : Technology & Engineering
Languages : en
Pages : 1061
Book Description
Many of the problems that engineers face involve randomly varying phenomena of one sort or another. However, if characterized properly, even such randomness and the resulting uncertainty are subject to rigorous mathematical analysis. Taking into account the uniquely multidisciplinary demands of 21st-century science and engineering, Random Phenomena: Fundamentals of Probability and Statistics for Engineers provides students with a working knowledge of how to solve engineering problems that involve randomly varying phenomena. Basing his approach on the principle of theoretical foundations before application, Dr. Ogunnaike presents a classroom-tested course of study that explains how to master and use probability and statistics appropriately to deal with uncertainty in standard problems and those that are new and unfamiliar. Giving students the tools and confidence to formulate practical solutions to problems, this book offers many useful features, including: Unique case studies to illustrate the fundamentals and applications of probability and foster understanding of the random variable and its distribution Examples of development, selection, and analysis of probability models for specific random variables Presentation of core concepts and ideas behind statistics and design of experiments Selected "special topics," including reliability and life testing, quality assurance and control, and multivariate analysis As classic scientific boundaries continue to be restructured, the use of engineering is spilling over into more non-traditional areas, ranging from molecular biology to finance. This book emphasizes fundamentals and a "first principles" approach to deal with this evolution. It illustrates theory with practical examples and case studies, equipping readers to deal with a wide range of problems beyond those in the book. About the Author: Professor Ogunnaike is Interim Dean of Engineering at the University of Delaware. He is the recipient of the 2008 American Automatic Control Council's Control Engineering Practice Award, the ISA's Donald P. Eckman Education Award, the Slocomb Excellence in Teaching Award, and was elected into the US National Academy of Engineering in 2012.
Publisher: CRC Press
ISBN: 1420044982
Category : Technology & Engineering
Languages : en
Pages : 1061
Book Description
Many of the problems that engineers face involve randomly varying phenomena of one sort or another. However, if characterized properly, even such randomness and the resulting uncertainty are subject to rigorous mathematical analysis. Taking into account the uniquely multidisciplinary demands of 21st-century science and engineering, Random Phenomena: Fundamentals of Probability and Statistics for Engineers provides students with a working knowledge of how to solve engineering problems that involve randomly varying phenomena. Basing his approach on the principle of theoretical foundations before application, Dr. Ogunnaike presents a classroom-tested course of study that explains how to master and use probability and statistics appropriately to deal with uncertainty in standard problems and those that are new and unfamiliar. Giving students the tools and confidence to formulate practical solutions to problems, this book offers many useful features, including: Unique case studies to illustrate the fundamentals and applications of probability and foster understanding of the random variable and its distribution Examples of development, selection, and analysis of probability models for specific random variables Presentation of core concepts and ideas behind statistics and design of experiments Selected "special topics," including reliability and life testing, quality assurance and control, and multivariate analysis As classic scientific boundaries continue to be restructured, the use of engineering is spilling over into more non-traditional areas, ranging from molecular biology to finance. This book emphasizes fundamentals and a "first principles" approach to deal with this evolution. It illustrates theory with practical examples and case studies, equipping readers to deal with a wide range of problems beyond those in the book. About the Author: Professor Ogunnaike is Interim Dean of Engineering at the University of Delaware. He is the recipient of the 2008 American Automatic Control Council's Control Engineering Practice Award, the ISA's Donald P. Eckman Education Award, the Slocomb Excellence in Teaching Award, and was elected into the US National Academy of Engineering in 2012.
Fundamentals of Applied Probability Theory
Fundamentals of Probability
Author: Saeed Ghahramani
Publisher: CRC Press
ISBN: 042985627X
Category : Mathematics
Languages : en
Pages : 699
Book Description
"The 4th edition of Ghahramani's book is replete with intriguing historical notes, insightful comments, and well-selected examples/exercises that, together, capture much of the essence of probability. Along with its Companion Website, the book is suitable as a primary resource for a first course in probability. Moreover, it has sufficient material for a sequel course introducing stochastic processes and stochastic simulation." --Nawaf Bou-Rabee, Associate Professor of Mathematics, Rutgers University Camden, USA "This book is an excellent primer on probability, with an incisive exposition to stochastic processes included as well. The flow of the text aids its readability, and the book is indeed a treasure trove of set and solved problems. Every sub-topic within a chapter is supplemented by a comprehensive list of exercises, accompanied frequently by self-quizzes, while each chapter ends with a useful summary and another rich collection of review problems." --Dalia Chakrabarty, Department of Mathematical Sciences, Loughborough University, UK "This textbook provides a thorough and rigorous treatment of fundamental probability, including both discrete and continuous cases. The book’s ample collection of exercises gives instructors and students a great deal of practice and tools to sharpen their understanding. Because the definitions, theorems, and examples are clearly labeled and easy to find, this book is not only a great course accompaniment, but an invaluable reference." --Joshua Stangle, Assistant Professor of Mathematics, University of Wisconsin – Superior, USA This one- or two-term calculus-based basic probability text is written for majors in mathematics, physical sciences, engineering, statistics, actuarial science, business and finance, operations research, and computer science. It presents probability in a natural way: through interesting and instructive examples and exercises that motivate the theory, definitions, theorems, and methodology. This book is mathematically rigorous and, at the same time, closely matches the historical development of probability. Whenever appropriate, historical remarks are included, and the 2096 examples and exercises have been carefully designed to arouse curiosity and hence encourage students to delve into the theory with enthusiasm. New to the Fourth Edition: 538 new examples and exercises have been added, almost all of which are of applied nature in realistic contexts Self-quizzes at the end of each section and self-tests at the end of each chapter allow students to check their comprehension of the material An all-new Companion Website includes additional examples, complementary topics not covered in the previous editions, and applications for more in-depth studies, as well as a test bank and figure slides. It also includes complete solutions to all self-test and self-quiz problems Saeed Ghahramani is Professor of Mathematics and Dean of the College of Arts and Sciences at Western New England University. He received his Ph.D. from the University of California at Berkeley in Mathematics and is a recipient of teaching awards from Johns Hopkins University and Towson University. His research focuses on applied probability, stochastic processes, and queuing theory.
Publisher: CRC Press
ISBN: 042985627X
Category : Mathematics
Languages : en
Pages : 699
Book Description
"The 4th edition of Ghahramani's book is replete with intriguing historical notes, insightful comments, and well-selected examples/exercises that, together, capture much of the essence of probability. Along with its Companion Website, the book is suitable as a primary resource for a first course in probability. Moreover, it has sufficient material for a sequel course introducing stochastic processes and stochastic simulation." --Nawaf Bou-Rabee, Associate Professor of Mathematics, Rutgers University Camden, USA "This book is an excellent primer on probability, with an incisive exposition to stochastic processes included as well. The flow of the text aids its readability, and the book is indeed a treasure trove of set and solved problems. Every sub-topic within a chapter is supplemented by a comprehensive list of exercises, accompanied frequently by self-quizzes, while each chapter ends with a useful summary and another rich collection of review problems." --Dalia Chakrabarty, Department of Mathematical Sciences, Loughborough University, UK "This textbook provides a thorough and rigorous treatment of fundamental probability, including both discrete and continuous cases. The book’s ample collection of exercises gives instructors and students a great deal of practice and tools to sharpen their understanding. Because the definitions, theorems, and examples are clearly labeled and easy to find, this book is not only a great course accompaniment, but an invaluable reference." --Joshua Stangle, Assistant Professor of Mathematics, University of Wisconsin – Superior, USA This one- or two-term calculus-based basic probability text is written for majors in mathematics, physical sciences, engineering, statistics, actuarial science, business and finance, operations research, and computer science. It presents probability in a natural way: through interesting and instructive examples and exercises that motivate the theory, definitions, theorems, and methodology. This book is mathematically rigorous and, at the same time, closely matches the historical development of probability. Whenever appropriate, historical remarks are included, and the 2096 examples and exercises have been carefully designed to arouse curiosity and hence encourage students to delve into the theory with enthusiasm. New to the Fourth Edition: 538 new examples and exercises have been added, almost all of which are of applied nature in realistic contexts Self-quizzes at the end of each section and self-tests at the end of each chapter allow students to check their comprehension of the material An all-new Companion Website includes additional examples, complementary topics not covered in the previous editions, and applications for more in-depth studies, as well as a test bank and figure slides. It also includes complete solutions to all self-test and self-quiz problems Saeed Ghahramani is Professor of Mathematics and Dean of the College of Arts and Sciences at Western New England University. He received his Ph.D. from the University of California at Berkeley in Mathematics and is a recipient of teaching awards from Johns Hopkins University and Towson University. His research focuses on applied probability, stochastic processes, and queuing theory.
Introduction to Probability
Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 188652923X
Category : Mathematics
Languages : en
Pages : 544
Book Description
An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.
Publisher: Athena Scientific
ISBN: 188652923X
Category : Mathematics
Languages : en
Pages : 544
Book Description
An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.
Fundamentals of Probability: A First Course
Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 1441957804
Category : Mathematics
Languages : en
Pages : 457
Book Description
Probability theory is one branch of mathematics that is simultaneously deep and immediately applicable in diverse areas of human endeavor. It is as fundamental as calculus. Calculus explains the external world, and probability theory helps predict a lot of it. In addition, problems in probability theory have an innate appeal, and the answers are often structured and strikingly beautiful. A solid background in probability theory and probability models will become increasingly more useful in the twenty-?rst century, as dif?cult new problems emerge, that will require more sophisticated models and analysis. Thisisa text onthe fundamentalsof thetheoryofprobabilityat anundergraduate or ?rst-year graduate level for students in science, engineering,and economics. The only mathematical background required is knowledge of univariate and multiva- ate calculus and basic linear algebra. The book covers all of the standard topics in basic probability, such as combinatorial probability, discrete and continuous distributions, moment generating functions, fundamental probability inequalities, the central limit theorem, and joint and conditional distributions of discrete and continuous random variables. But it also has some unique features and a forwa- looking feel.
Publisher: Springer Science & Business Media
ISBN: 1441957804
Category : Mathematics
Languages : en
Pages : 457
Book Description
Probability theory is one branch of mathematics that is simultaneously deep and immediately applicable in diverse areas of human endeavor. It is as fundamental as calculus. Calculus explains the external world, and probability theory helps predict a lot of it. In addition, problems in probability theory have an innate appeal, and the answers are often structured and strikingly beautiful. A solid background in probability theory and probability models will become increasingly more useful in the twenty-?rst century, as dif?cult new problems emerge, that will require more sophisticated models and analysis. Thisisa text onthe fundamentalsof thetheoryofprobabilityat anundergraduate or ?rst-year graduate level for students in science, engineering,and economics. The only mathematical background required is knowledge of univariate and multiva- ate calculus and basic linear algebra. The book covers all of the standard topics in basic probability, such as combinatorial probability, discrete and continuous distributions, moment generating functions, fundamental probability inequalities, the central limit theorem, and joint and conditional distributions of discrete and continuous random variables. But it also has some unique features and a forwa- looking feel.
Probability for Statistics and Machine Learning
Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 1441996346
Category : Mathematics
Languages : en
Pages : 796
Book Description
This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.
Publisher: Springer Science & Business Media
ISBN: 1441996346
Category : Mathematics
Languages : en
Pages : 796
Book Description
This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.
Probability and Conditional Expectation
Author: Rolf Steyer
Publisher: John Wiley & Sons
ISBN: 1119243483
Category : Mathematics
Languages : en
Pages : 728
Book Description
Probability and Conditional Expectations bridges the gap between books on probability theory and statistics by providing the probabilistic concepts estimated and tested in analysis of variance, regression analysis, factor analysis, structural equation modeling, hierarchical linear models and analysis of qualitative data. The authors emphasize the theory of conditional expectations that is also fundamental to conditional independence and conditional distributions. Probability and Conditional Expectations Presents a rigorous and detailed mathematical treatment of probability theory focusing on concepts that are fundamental to understand what we are estimating in applied statistics. Explores the basics of random variables along with extensive coverage of measurable functions and integration. Extensively treats conditional expectations also with respect to a conditional probability measure and the concept of conditional effect functions, which are crucial in the analysis of causal effects. Is illustrated throughout with simple examples, numerous exercises and detailed solutions. Provides website links to further resources including videos of courses delivered by the authors as well as R code exercises to help illustrate the theory presented throughout the book.
Publisher: John Wiley & Sons
ISBN: 1119243483
Category : Mathematics
Languages : en
Pages : 728
Book Description
Probability and Conditional Expectations bridges the gap between books on probability theory and statistics by providing the probabilistic concepts estimated and tested in analysis of variance, regression analysis, factor analysis, structural equation modeling, hierarchical linear models and analysis of qualitative data. The authors emphasize the theory of conditional expectations that is also fundamental to conditional independence and conditional distributions. Probability and Conditional Expectations Presents a rigorous and detailed mathematical treatment of probability theory focusing on concepts that are fundamental to understand what we are estimating in applied statistics. Explores the basics of random variables along with extensive coverage of measurable functions and integration. Extensively treats conditional expectations also with respect to a conditional probability measure and the concept of conditional effect functions, which are crucial in the analysis of causal effects. Is illustrated throughout with simple examples, numerous exercises and detailed solutions. Provides website links to further resources including videos of courses delivered by the authors as well as R code exercises to help illustrate the theory presented throughout the book.