Fundamentals of Photon Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fundamentals of Photon Physics PDF full book. Access full book title Fundamentals of Photon Physics by Ole Keller. Download full books in PDF and EPUB format.

Fundamentals of Photon Physics

Fundamentals of Photon Physics PDF Author: Ole Keller
Publisher: CRC Press
ISBN: 1040103766
Category : Technology & Engineering
Languages : en
Pages : 560

Book Description
The photon, an abstract concept belonging to a global vacuum, only manifests itself during interaction with matter. Fundamentals of Photon Physics describes the richly faceted, basic theory of photon-matter interaction, selecting a wide number of topics. Together with the author’s book Light -- The Physics of the Photon (CRC, 2014), both written on a scholarly level, the reader is given a comprehensive exposition of photon wave mechanics, quantum optics and quantum electrodynamics (QED). Divided into 10 parts, the book begins by exploring the relation between photon wave mechanics and quantum field theory. It then describes the theories of zero- and one-photon states and that of bi-photons. After discussing conservation laws, Lagrangian formulations, geometric phase and topology, the author turns towards the theory of photon scattering, emphasizing a density matrix operator approach and the role of microscopic extinction theorems. The book next focuses on mesoscopic QED, devoting particular attention to collective jellium excitations and photon-spin interactions. Special attention is given to the basics of the photon-magnon interaction and nonlinear superconductor electrodynamics, including the nonlinear Meissner rectification phenomenon, before studying the theory of transverse photons tied to (dressing) massive particles. The last three parts take the reader on a journey to topics usually not treated in books on photon- matter interaction. Beginning with photons in curved space-time structures and in spatially curved media, e.g. Möbius bands, the author discusses the extension of QED to the electro-weak interaction at an introductory level. Fundamentals of Photon Physics ends with the establishment of the set of isovector Maxwell equations in non-Abelian SO(3) gauge theory, leading to the celebrated hedgehog monopole model. Ole Keller is professor emeritus of theoretical physics at Aalborg University, Denmark. He earned his Licentiate (∼ PhD) degree in semiconductor physics from the Danish Technical University in Copenhagen in 1972, and the Doctor of Science degree from the University of Aarhus (1996). In 1989 he was appointed as the first professor in physics at Aalborg University by Margrethe Den Anden, queen of Denmark. The same year he was admitted to Kraks Blaa Bog, a prestigious Danish biographical dictionary which (citatum) ”Includes men and women, whose life story could have an interest for a wider public”. He is a fellow of the Optical Society of America. He has written the books entitled Quantum Theory of Near-Field Electrodynamics (Springer, 2011) and LIGHT - The Physics of the Photon (CRC, 2014), as well as the monographs Local Fields in the Electrodynamics of Mesoscopic Media (Physics Reports, 1996) and On the Theory of Spatial Localization of Photons (Physics Reports, 2005). He is the editor of the books Nonlinear Optics in Solids (Springer, 1990), Studies in Classical and Quantum Nonlinear Optics (Nova Science, 1995) and Notions and Perspectives of Nonlinear Optics (World Scientific, 1996). In recent years he has carried out theoretical research in fundamental photon physics, microscopic few-photon diffraction, mesoscopic and Möbius band electrodynamics, and studied magnetic monopole theory based on QED and the isovector Maxwell equations in non-Abelian gauge symmetry.

Fundamentals of Photon Physics

Fundamentals of Photon Physics PDF Author: Ole Keller
Publisher: CRC Press
ISBN: 1040103766
Category : Technology & Engineering
Languages : en
Pages : 560

Book Description
The photon, an abstract concept belonging to a global vacuum, only manifests itself during interaction with matter. Fundamentals of Photon Physics describes the richly faceted, basic theory of photon-matter interaction, selecting a wide number of topics. Together with the author’s book Light -- The Physics of the Photon (CRC, 2014), both written on a scholarly level, the reader is given a comprehensive exposition of photon wave mechanics, quantum optics and quantum electrodynamics (QED). Divided into 10 parts, the book begins by exploring the relation between photon wave mechanics and quantum field theory. It then describes the theories of zero- and one-photon states and that of bi-photons. After discussing conservation laws, Lagrangian formulations, geometric phase and topology, the author turns towards the theory of photon scattering, emphasizing a density matrix operator approach and the role of microscopic extinction theorems. The book next focuses on mesoscopic QED, devoting particular attention to collective jellium excitations and photon-spin interactions. Special attention is given to the basics of the photon-magnon interaction and nonlinear superconductor electrodynamics, including the nonlinear Meissner rectification phenomenon, before studying the theory of transverse photons tied to (dressing) massive particles. The last three parts take the reader on a journey to topics usually not treated in books on photon- matter interaction. Beginning with photons in curved space-time structures and in spatially curved media, e.g. Möbius bands, the author discusses the extension of QED to the electro-weak interaction at an introductory level. Fundamentals of Photon Physics ends with the establishment of the set of isovector Maxwell equations in non-Abelian SO(3) gauge theory, leading to the celebrated hedgehog monopole model. Ole Keller is professor emeritus of theoretical physics at Aalborg University, Denmark. He earned his Licentiate (∼ PhD) degree in semiconductor physics from the Danish Technical University in Copenhagen in 1972, and the Doctor of Science degree from the University of Aarhus (1996). In 1989 he was appointed as the first professor in physics at Aalborg University by Margrethe Den Anden, queen of Denmark. The same year he was admitted to Kraks Blaa Bog, a prestigious Danish biographical dictionary which (citatum) ”Includes men and women, whose life story could have an interest for a wider public”. He is a fellow of the Optical Society of America. He has written the books entitled Quantum Theory of Near-Field Electrodynamics (Springer, 2011) and LIGHT - The Physics of the Photon (CRC, 2014), as well as the monographs Local Fields in the Electrodynamics of Mesoscopic Media (Physics Reports, 1996) and On the Theory of Spatial Localization of Photons (Physics Reports, 2005). He is the editor of the books Nonlinear Optics in Solids (Springer, 1990), Studies in Classical and Quantum Nonlinear Optics (Nova Science, 1995) and Notions and Perspectives of Nonlinear Optics (World Scientific, 1996). In recent years he has carried out theoretical research in fundamental photon physics, microscopic few-photon diffraction, mesoscopic and Möbius band electrodynamics, and studied magnetic monopole theory based on QED and the isovector Maxwell equations in non-Abelian gauge symmetry.

Atomic and Quantum Physics

Atomic and Quantum Physics PDF Author: Hermann Haken
Publisher: Springer Science & Business Media
ISBN: 3642968139
Category : Science
Languages : en
Pages : 402

Book Description
A thorough knowledge of the physics of atoms and quanta is clearly a must for every student of physics but also for students of neighbouring disciplines such as chemistry and electrical engineering. What these students especially need is a coherent presenta tion of both the experimental and the theoretical aspects of atomic and quantum physics. Indeed, this field could evolve only through the intimate interaction between ingenious experiments and an equally ingenious development of bold new ideas. It is well known that the study of the microworld of atoms caused a revolution of physical thought, and fundamental ideas of classical physics, such as those on measur ability, had to be abandoned. But atomic and quantum physics is not only a fascinating field with respect to the development of far-reaching new physical ideas. It is also of enormous importance as a basis for other fields. For instance, it provides chemistry with a conceptual basis through the quantum theory of chemical bonding. Modern solid-state physics, with its numerous applications in communication and computer technology, rests on the fundamental concepts first developed in atomic and quantum physics. Among the many other important technical applications we mention just the laser, a now widely used light source which produces light whose physical nature is quite different from that of conventional lamps. In this book we have tried to convey to the reader some of the fascination which atomic and quantum physics still gives a physicist studying this field.

Photon Counting

Photon Counting PDF Author: Nikolay Britun
Publisher: BoD – Books on Demand
ISBN: 953513907X
Category : Science
Languages : en
Pages : 298

Book Description
Photon counting is a unified name for the techniques using single-photon detection for accumulative measurements of the light flux, normally occurring under extremely low-light conditions. Nowadays, this approach can be applied to the wide variety of the radiation wavelengths, starting from X-ray and deep ultraviolet transitions and ending with far-infrared part of the spectrum. As a special tribute to the photon counting, the studies of cosmic microwave background radiation in astronomy, the experiments with muon detection, and the large-scale fundamental experiments on the nature of matter should be noted. The book provides readers with an overview on the fundamentals and state-of-the-art applications of photon counting technique in the applied science and everyday life.

Fundamentals of Physics II

Fundamentals of Physics II PDF Author: R. Shankar
Publisher: Yale University Press
ISBN: 0300243782
Category : Science
Languages : en
Pages : 679

Book Description
A beloved introductory physics textbook, now including exercises and an answer key, accessibly explains electromagnetism, optics, and quantum mechanics R. Shankar is a well-known physicist and contagiously enthusiastic educator, whose popular online introductory-physics video lectures have been viewed over a million times. In this second book based on his online courses, Shankar explains electromagnetism, optics, and quantum mechanics, developing the basics and reinforcing the fundamentals. With the help of problem sets and answer keys, students learn about the most interesting findings of today's research while gaining a firm foundation in the principles and methods of physics.

Light - The Physics of the Photon

Light - The Physics of the Photon PDF Author: Ole Keller
Publisher: CRC Press
ISBN: 143984044X
Category : Science
Languages : en
Pages : 464

Book Description
From the early wave-particle arguments to the mathematical theory of electromagnetism to Einstein's work on the quantization of light, different descriptions of what constitutes light have existed for over 300 years. This book examines the photon phenomenon from several perspectives. It demonstrates the importance of studying the photon as a concept belonging to a global vacuum (matter-free space). The book explains the models and physical and mathematical descriptions of light and examines the behavior of light and its interaction with matter.

Fundamentals of Photonics

Fundamentals of Photonics PDF Author: Bahaa E. A. Saleh
Publisher: Wiley-Interscience
ISBN:
Category : Photography
Languages : en
Pages : 1014

Book Description
In recent years, photonics has found increasing applications in such areas as communications, signal processing, computing, sensing, display, printing, and energy transport. Now, Fundamentals of Photonics is the first self-contained introductory-level textbook to offer a thorough survey of this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light with matter, and the theory of semiconductor materials and their optical properties. Presented at increasing levels of complexity, these sections serve as building blocks for the treatment of more advanced topics, such as Fourier optics and holography, guidedwave and fiber optics, photon sources and detectors, electro-optic and acousto-optic devices, nonlinear optical devices, fiber-optic communications, and photonic switching and computing. Included are such vital topics as: Generation of coherent light by lasers, and incoherent light by luminescence sources such as light-emitting diodes Transmission of light through optical components (lenses, apertures, and imaging systems), waveguides, and fibers Modulation, switching, and scanning of light through the use of electrically, acoustically, and optically controlled devices Amplification and frequency conversion of light by the use of wave interactions in nonlinear materials Detection of light by means of semiconductor photodetectors Each chapter contains summaries, highlighted equations, problem sets and exercises, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest, and appendices summarize the properties of one- and two-dimensional Fourier transforms, linear-systems theory, and modes of linear systems. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Photonics, Volume 1

Photonics, Volume 1 PDF Author: David L. Andrews
Publisher: John Wiley & Sons
ISBN: 1119009707
Category : Technology & Engineering
Languages : en
Pages : 486

Book Description
Covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonics. This volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Polarization States; Quantum Electrodynamics; Quantum Information and Computing; Quantum Optics; Resonance Energy Transfer; Surface Optics; Ultrafast Pulse Phenomena. Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.

The Basics of Quantum Physics

The Basics of Quantum Physics PDF Author: Edward Willett
Publisher: The Rosen Publishing Group, Inc
ISBN: 9781404203341
Category : Science
Languages : en
Pages : 52

Book Description
Explains the phenomena that classical physics could not explain but quantum physics could, the photoelectric effect and line spectra.

Quantum Optics and Fundamentals of Physics

Quantum Optics and Fundamentals of Physics PDF Author: Jan Perina
Publisher: Springer Science & Business Media
ISBN: 940110932X
Category : Science
Languages : en
Pages : 351

Book Description
In last years increasing attention has been again devoted to interpretations of quantum theory. In the same time interesting quantum optical experiments have been performed using nonlinear optical processes, in particular frequency down conversion, which provided new information about nature of a photon on the basis of interference and correlation (coincidence) phenomena. Such single-photon and twin-photon effects of quantum optics provide new point of view of interpretations of quantum theory and new tests of its principles. The purpose of this book is to discuss these questions. To follow this goal we give brief reviews of principles of quantum theory and of quantum theory of measurement. As a fundamental theoretical tool the coherent state technique is adopted based on a general algebraic treatment, including the de scription of interaction of radiation and matter. Typical quantum behaviour of physical systems is exhibited by nonclassical optical phenomena, which can be examined using photon interferences and correlations. These phenomena are closely related to violation of various classical inequalities and Bell's in equalities. The most important part of this book discusses quantum optical experiments supporting quantum theory. This book may be considered as a continuation of previous monographs by one of the authors on Coherence of Light (Van Nostrand Reinhold, London 1972, second edition D. Reidel, Dordrecht 1985) and on Quantum Statistics of Linear and Nonlinear Optical Phenomena (D. Reidel, Dordrecht 1984, second edition Kluwer, Dordrecht 1991), which may serve as a preparation for reading this book.

Fundamentals of Quantum Optics

Fundamentals of Quantum Optics PDF Author: John R. Klauder
Publisher: Courier Corporation
ISBN: 0486450082
Category : Science
Languages : en
Pages : 306

Book Description
This graduate-level text surveys the fundamentals of quantum optics, including the quantum theory of partial coherence and the nature of the relations between classical and quantum theories of coherence.1968 edition.