Functional Oxide Heterostructures on Semiconductors PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Functional Oxide Heterostructures on Semiconductors PDF full book. Access full book title Functional Oxide Heterostructures on Semiconductors by Hosung Seo. Download full books in PDF and EPUB format.

Functional Oxide Heterostructures on Semiconductors

Functional Oxide Heterostructures on Semiconductors PDF Author: Hosung Seo
Publisher:
ISBN:
Category :
Languages : en
Pages : 312

Book Description
Complex oxides exhibiting a wide variety of novel functional properties such as ferromagnetism and ferroelectricity have been extensively studied during the past decades. Recent advances in the field of oxide heteroepitaxy have made it possible to create and control hybrid oxide heterostructures with abrupt epitaxial interfaces. The oxide heteroepitaxy with the capability of controlling interface composition, strain, length scales, etc. has opened the totally new and exciting scientific avenue and has offered potential device applications to be explored. Epitaxial integration of functional oxides on semiconductor such as Si (001) and Ge(001) is of great interest, as it potentially leads to further technological development of these interesting oxide systems. In this dissertation, using density functional theory we explore physics and chemistry of novel oxide heterostructures and issues related to the integration of functional oxides on semiconductors. Oxide materials that are studied in this dissertation include polar LaAlO3, high-k dielectric SrTiO3, photocatalytic anatase TiO2 and CoO, and strongly correlated magnetic oxide LaCoO3.

Functional Oxide Heterostructures on Semiconductors

Functional Oxide Heterostructures on Semiconductors PDF Author: Hosung Seo
Publisher:
ISBN:
Category :
Languages : en
Pages : 312

Book Description
Complex oxides exhibiting a wide variety of novel functional properties such as ferromagnetism and ferroelectricity have been extensively studied during the past decades. Recent advances in the field of oxide heteroepitaxy have made it possible to create and control hybrid oxide heterostructures with abrupt epitaxial interfaces. The oxide heteroepitaxy with the capability of controlling interface composition, strain, length scales, etc. has opened the totally new and exciting scientific avenue and has offered potential device applications to be explored. Epitaxial integration of functional oxides on semiconductor such as Si (001) and Ge(001) is of great interest, as it potentially leads to further technological development of these interesting oxide systems. In this dissertation, using density functional theory we explore physics and chemistry of novel oxide heterostructures and issues related to the integration of functional oxides on semiconductors. Oxide materials that are studied in this dissertation include polar LaAlO3, high-k dielectric SrTiO3, photocatalytic anatase TiO2 and CoO, and strongly correlated magnetic oxide LaCoO3.

Integration of Functional Oxides with Semiconductors

Integration of Functional Oxides with Semiconductors PDF Author: Alexander A. Demkov
Publisher: Springer Science & Business Media
ISBN: 146149320X
Category : Technology & Engineering
Languages : en
Pages : 284

Book Description
This book describes the basic physical principles of the oxide/semiconductor epitaxy and offers a view of the current state of the field. It shows how this technology enables large-scale integration of oxide electronic and photonic devices and describes possible hybrid semiconductor/oxide systems. The book incorporates both theoretical and experimental advances to explore the heteroepitaxy of tuned functional oxides and semiconductors to identify material, device and characterization challenges and to present the incredible potential in the realization of multifunctional devices and monolithic integration of materials and devices. Intended for a multidisciplined audience, Integration of Functional Oxides with Semiconductors describes processing techniques that enable atomic-level control of stoichiometry and structure and reviews characterization techniques for films, interfaces and device performance parameters. Fundamental challenges involved in joining covalent and ionic systems, chemical interactions at interfaces, multi-element materials that are sensitive to atomic-level compositional and structural changes are discussed in the context of the latest literature. Magnetic, ferroelectric and piezoelectric materials and the coupling between them will also be discussed. GaN, SiC, Si, GaAs and Ge semiconductors are covered within the context of optimizing next-generation device performance for monolithic device processing.

Integration of Multi-functional Oxide Thin Film Heterostructures with III-V Semiconductors

Integration of Multi-functional Oxide Thin Film Heterostructures with III-V Semiconductors PDF Author: Md Shafiqur Rahman
Publisher:
ISBN:
Category : Microelectronics
Languages : en
Pages : 250

Book Description
Integration of multi-functional oxide thin films with semiconductors has attracted considerable attention in recent years due to their potential applications in sensing and logic functionalities that can be incorporated in future system-on-a-chip devices. III-V semiconductor, for example, GaAs, have higher saturated electron velocity and mobility allowing transistors based on GaAs to operate at a much higher frequency with less noise compared to Si. In addition, because of its direct bandgap a number of efficient optical devices are possible and by oxide integrating with other III-V semiconductors the wavelengths can be made tunable through hetero-engineering of the bandgap. This study, based on the use of SrTiO3 (STO) films grown on GaAs (001) substrates by molecular beam epitaxy (MBE) as an intermediate buffer layer for the hetero-epitaxial growth of ferromagnetic La0.7Sr0.3MnO3 (LSMO) and room temperature multiferroic BiFeO3 (BFO) thin films and superlattice structures using pulsed laser deposition (PLD). The properties of the multilayer thin films in terms of growth modes, lattice spacing/strain, interface structures and texture were characterized by the in-situ reflection high energy electron diffraction (RHEED). The crystalline quality and chemical composition of the complex oxide heterostructures were investigated by a combination of X-ray diffraction (XRD) and X-ray photoelectron absorption spectroscopy (XPS). Surface morphology, piezo-response with domain structure, and ferroelectric switching observations were carried out on the thin film samples using a scanning probe microscope operated as a piezoresponse force microscopy (PFM) in the contact mode. The magnetization measurements with field cooling exhibit a surprising increment in magnetic moment with enhanced magnetic hysteresis squareness. This is the effect of exchange interaction between the antiferromagnetic BFO and the ferromagnetic LSMO at the interface. The integration of BFO materials with LSMO on GaAs substrate also facilitated the demonstration of resistive random access memory (ReRAM) devices which can be faster with lower energy consumption compared to present commercial technologies. Ferroelectric switching observations using piezoresponse force microscopy show polarization switching demonstrating its potential for read-write operation in NVM devices. The ferroelectric and electrical characterization exhibit strong resistive switching with low SET/RESET voltages. Furthermore, a prototypical epitaxial field effect transistor based on multiferroic BFO as the gate dielectric and ferromagnetic LSMO as the conducting channel was also demonstrated. The device exhibits a modulation in channel conductance with high ON/OFF ratio. The measured nanostructure and physical-compositional results from the multilayer are correlated with their corresponding dielectric, piezoelectric, and ferroelectric properties. These results provide an understanding of the heteroepitaxial growth of ferroelectric (FE)-antiferromagnetic (AFM) BFO on ferromagnetic LSMO as a simple thin film or superlattice structure, integrated on STO buffered GaAs (001) with full control over the interface structure at the atomic-scale. This work also represents the first step toward the realization of magnetoelectronic devices integrated with GaAs (001).

Thin Films and Heterostructures for Oxide Electronics

Thin Films and Heterostructures for Oxide Electronics PDF Author: Satishchandra B. Ogale
Publisher: Springer Science & Business Media
ISBN: 0387260897
Category : Technology & Engineering
Languages : en
Pages : 416

Book Description
Oxides form a broad subject area of research and technology development which encompasses different disciplines such as materials science, solid state chemistry, physics etc. The aim of this book is to demonstrate the interplay of these fields and to provide an introduction to the techniques and methodologies involving film growth, characterization and device processing. The literature in this field is thus fairly scattered in different research journals covering one or the other aspect of the specific activity. This situation calls for a book that will consolidate this information and thus enable a beginner as well as an expert to get an overall perspective of the field, its foundations, and its projected progress.

Multifunctional Oxide Heterostructures

Multifunctional Oxide Heterostructures PDF Author: Evgeny Y. Tsymbal
Publisher: OUP Oxford
ISBN: 0191642223
Category : Science
Languages : en
Pages : 416

Book Description
This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts. The book consists of chapters on some of the key innovations in the field over recent years, including strongly correlated oxide heterostructures, magnetoelectric coupling and multiferroic materials, thermoelectric phenomena, and two-dimensional electron gases at oxide interfaces. The book covers the core principles, describes experimental approaches to fabricate and characterize oxide heterostructures, demonstrates new functional properties of these materials, and provides an overview of novel applications.

Correlated Functional Oxides

Correlated Functional Oxides PDF Author: Hiroaki Nishikawa
Publisher: Springer
ISBN: 3319437798
Category : Technology & Engineering
Languages : en
Pages : 241

Book Description
This book introduces a variety of basic sciences and applications of the nanocomposites and heterostructures of functional oxides. The presence of a high density of interfaces and the differences in their natures are described by the authors. Both nanocomposites and heterostructures are detailed in depth by researchers from each of the research areas in order to compare their similarities and differences. A new interfacial material of heterostructure of strongly correlated electron systems is introduced.

Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices

Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices PDF Author: Serge Zhuiykov
Publisher: Woodhead Publishing
ISBN: 1782422242
Category : Technology & Engineering
Languages : en
Pages : 487

Book Description
Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices focuses on the development of semiconductor nanocrystals, their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells, and chemical sensors. Semiconductor oxides are used in electronics, optics, catalysts, sensors, and other functional devices. In their 2D form, the reduction in size confers exceptional properties, useful for creating faster electronics and more efficient catalysts. After explaining the physics affecting the conductivity and electron arrangement of nanostructured semiconductors, the book addresses the structural and chemical modification of semiconductor nanocrystals during material growth. It then covers their use in nanoscale functional devices, particularly in electronic devices and carbon nanotubes. It explores the impact of 2D nanocrystals, such as graphene, chalcogenides, and oxide nanostructures, on research and technology, leading to a discussion of incorporating graphene and semiconductor nanostructures into composites for use in energy storage. The final three chapters focus on the applications of these functional materials in photovoltaic cells, solid oxide fuel cells, and in environmental sensors including pH, dissolved oxygen, dissolved organic carbon, and dissolved metal ion sensors. Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices is a crucial resource for scientists, applied researchers, and production engineers working in the fabrication, design, testing, characterization, and analysis of new semiconductor materials. This book is a valuable reference for those working in the analysis and characterization of new nanomaterials, and for those who develop technologies for practical devices fabrication. Focuses on the development of semiconductor nanocrystals, their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells, and chemical sensors Reviews fundamental physics of conductivity and electron arrangement before proceeding to practical applications A vital resource for applied researchers and production engineers working with new semiconductor materials

Metal Oxide-Based Thin Film Structures

Metal Oxide-Based Thin Film Structures PDF Author: Nini Pryds
Publisher: Elsevier
ISBN: 0081017529
Category : Technology & Engineering
Languages : en
Pages : 562

Book Description
Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike

Characterization of Semiconductor Heterostructures and Nanostructures

Characterization of Semiconductor Heterostructures and Nanostructures PDF Author: Giovanni Agostini
Publisher: Newnes
ISBN: 044459549X
Category : Technology & Engineering
Languages : en
Pages : 829

Book Description
Characterization of Semiconductor Heterostructures and Nanostructures is structured so that each chapter is devoted to a specific characterization technique used in the understanding of the properties (structural, physical, chemical, electrical etc..) of semiconductor quantum wells and superlattices. An additional chapter is devoted to ab initio modeling. The book has two basic aims. The first is educational, providing the basic concepts of each of the selected techniques with an approach understandable by advanced students in Physics, Chemistry, Material Science, Engineering, Nanotechnology. The second aim is to provide a selected set of examples from the recent literature of the TOP results obtained with the specific technique in understanding the properties of semiconductor heterostructures and nanostructures. Each chapter has this double structure: the first part devoted to explain the basic concepts, and the second to the discussion of the most peculiar and innovative examples. The topic of quantum wells, wires and dots should be seen as a pretext of applying top level characterization techniques in understanding the structural, electronic etc properties of matter at the nanometer (and even sub-nanometer) scale. In this respect it is an essential reference in the much broader, and extremely hot, field of Nanotechnology. Comprehensive collection of the most powerful characterization techniques for semiconductors heterostructures and nanostructures Most of the chapters are authored by scientists that are world-wide among the top-ten in publication ranking of the specific field Each chapter starts with a didactic introduction on the technique The second part of each chapters deals with a selection of top examples highlighting the power of the specific technique to analyse the properties of semiconductors heterostructures and nanostructures

Metal Oxide Semiconductors

Metal Oxide Semiconductors PDF Author: Zhigang Zang
Publisher: John Wiley & Sons
ISBN: 3527352252
Category : Technology & Engineering
Languages : en
Pages : 293

Book Description
Metal Oxide Semiconductors Up-to-date resource highlighting highlights emerging applications of metal oxide semiconductors in various areas and current challenges and directions in commercialization Metal Oxide Semiconductors provides a current understanding of oxide semiconductors, covering fundamentals, synthesizing methods, and applications in diodes, thin-film transistors, gas sensors, solar cells, and more. The text presents state-of-the-art information along with fundamental prerequisites for understanding and discusses the current challenges in pursuing commercialization and future directions of this field. Despite rapid advancements in the materials science and device physics of oxide semiconductors over the past decade, the understanding of science and technology in this field remains incomplete due to its relatively short research history; this book aims to bridge the gap between the rapidly advancing research progress in this field and the demand for relevant materials and devices by researchers, engineers, and students. Written by three highly qualified authors, Metal Oxide Semiconductors discusses sample topics such as: Fabrication techniques and principles, covering vacuum-based methods, including sputtering, atomic layer deposition and evaporation, and solution-based methods Fundamentals, progresses, and potentials of p–n heterojunction diodes, Schottky diodes, metal-insulator-semiconductor diodes, and self-switching diodes Applications in thin-film transistors, detailing the current progresses and challenges towards commercialization for n-type TFTs, p-type TFTs, and circuits Detailed discussions on the working mechanisms and representative devices of oxide-based gas sensors, pressure sensors, and PH sensors Applications in optoelectronics, both in solar cells and ultraviolet photodetectors, covering their parameters, materials, and performance Memory applications, including resistive random-access memory, transistor-structured memory devices, transistor-structured artificial synapse, and optical memory transistors A comprehensive monograph covering all aspects of oxide semiconductors, Metal Oxide Semiconductors is an essential resource for materials scientists, electronics engineers, semiconductor physicists, and professionals in the semiconductor and sensor industries who wish to understand all modern developments that have been made in the field.