Functional Methods for the Solution of One-Dimensional Quantum Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Functional Methods for the Solution of One-Dimensional Quantum Systems PDF full book. Access full book title Functional Methods for the Solution of One-Dimensional Quantum Systems by Tobias Wirth. Download full books in PDF and EPUB format.

Functional Methods for the Solution of One-Dimensional Quantum Systems

Functional Methods for the Solution of One-Dimensional Quantum Systems PDF Author: Tobias Wirth
Publisher: Sudwestdeutscher Verlag Fur Hochschulschriften AG
ISBN: 9783838123875
Category :
Languages : en
Pages : 124

Book Description
The framework of the Quantum Inverse Scattering Method is used to study the hamiltonian of the XXX and XXZ spin chain with general boundary fields. Key ingredient is the underlying algebraic structure which is a combination of the Yang-Baxter algebra and a so-called Reflection algebra including boundary fields of arbitrary direction and strength. For spin chains with diagonal boundary fields this setup has been well studied using algebraic Bethe ansatz and the inverse problem was solved by Kitanine for infinite chain lengths. These results are picked up and generalized to arbitrary lengths using non-linear integral equations. In the case of non-diagonal boundary fields the lack of a reference state or pseudo vacuum prohibits the solution by algebraic Bethe ansatz. The method of separation of variables is not constrained in that sense and is applied to the XXX chain and a spin-boson model. Finally a different approach to the case of non-diagonal boundary conditions is studied. Starting from the so-called fusion hierarchy non-linear integral equations are derived bearing the possibility to extract information about an eigenvalue of a specific state.

Functional Methods for the Solution of One-Dimensional Quantum Systems

Functional Methods for the Solution of One-Dimensional Quantum Systems PDF Author: Tobias Wirth
Publisher: Sudwestdeutscher Verlag Fur Hochschulschriften AG
ISBN: 9783838123875
Category :
Languages : en
Pages : 124

Book Description
The framework of the Quantum Inverse Scattering Method is used to study the hamiltonian of the XXX and XXZ spin chain with general boundary fields. Key ingredient is the underlying algebraic structure which is a combination of the Yang-Baxter algebra and a so-called Reflection algebra including boundary fields of arbitrary direction and strength. For spin chains with diagonal boundary fields this setup has been well studied using algebraic Bethe ansatz and the inverse problem was solved by Kitanine for infinite chain lengths. These results are picked up and generalized to arbitrary lengths using non-linear integral equations. In the case of non-diagonal boundary fields the lack of a reference state or pseudo vacuum prohibits the solution by algebraic Bethe ansatz. The method of separation of variables is not constrained in that sense and is applied to the XXX chain and a spin-boson model. Finally a different approach to the case of non-diagonal boundary conditions is studied. Starting from the so-called fusion hierarchy non-linear integral equations are derived bearing the possibility to extract information about an eigenvalue of a specific state.

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems PDF Author: Fabio Franchini
Publisher: Springer
ISBN: 3319484877
Category : Science
Languages : en
Pages : 186

Book Description
This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.

Dynamics of One-Dimensional Quantum Systems

Dynamics of One-Dimensional Quantum Systems PDF Author: Yoshio Kuramoto
Publisher: Cambridge University Press
ISBN: 0521815983
Category : Mathematics
Languages : en
Pages : 487

Book Description
A concise and accessible account of the dynamical properties of one-dimensional quantum systems, for graduate students and new researchers.

Functional Methods in Quantum Field Theory and Statistical Physics

Functional Methods in Quantum Field Theory and Statistical Physics PDF Author: A.N. Vasiliev
Publisher: Routledge
ISBN: 1351446819
Category : Science
Languages : en
Pages : 320

Book Description
Providing a systematic introduction to the techniques which are fundamental to quantum field theory, this book pays special attention to the use of these techniques in a wide variety of areas, including ordinary quantum mechanics, quantum mechanics in the second-quantized formulation, relativistic quantum field theory, Euclidean field theory, quant

Advanced Quantum Mechanics: The Classical-Quantum Connection

Advanced Quantum Mechanics: The Classical-Quantum Connection PDF Author: Reinhold Blumel
Publisher: Jones & Bartlett Publishers
ISBN: 1449666922
Category : Science
Languages : en
Pages : 437

Book Description
This book provides a coherent introduction to Gutzwiller’s trace formula accessible to well-prepared science, mathematics, and engineering students who have taken introductory courses in linear algebra, classical, and quantum mechanics. In addition to providing an enrichment of the undergraduate curriculum, this book may serve as the primary text for graduate courses on semiclassical methods. Since periodic-orbit expansions may be used to solve all types of wave systems that typically occur in mathematics, phyics, and engineering, this book is attractice for professional scientists and engineers as well. Following a thorough review of elementary concepts in classical and quantum mechanics the reader is introduced to the idea of classical periodic orbits, the foundation of Gutzwiller’s approach to quantum spectra. The trace formula itself is derived following an introduction to Feynman’s path integrals. Numerous applications, including the exact solutions of “unsolvable” one-dimensional quantum problems, illustrate the power of Gutzwiller’s method. Worked examples throughout the text illustrate the material and provide immediate “hands-on” demonstrations of tools and concepts just learned. Problems at the end of each section invite the reader to consolidate the acquired knowledge.

Exact Treatment of Finite-dimensional and Infinite-dimensional Quantum Systems

Exact Treatment of Finite-dimensional and Infinite-dimensional Quantum Systems PDF Author: Tomislav Predavač Živković
Publisher:
ISBN: 9781616685973
Category : Eigenvalues
Languages : en
Pages : 0

Book Description
There are very few quantum systems that can be solved exactly. In most cases, one has to use some approximate method. One of the most important approximate methods is perturbation expansion. The main idea of this method is simple: if one knows the solution of some parent system, one can find the solution of the "perturbed" system. It is assumed that the system does not differ from the parent system very much, in which case "perturbation" is small. Next one expresses eigenvalues and eigenstates of the perturbed systems as a power series expansion in terms of the eigenvalues and eigenstates of the parent system. Hence in order to obtain the solution of the perturbed system, one has to know the solution of the parent system. This book offers examples and solutions to this fascinating topic.

Mathematical Methods in Quantum Mechanics

Mathematical Methods in Quantum Mechanics PDF Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322

Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).

Advanced Quantum Mechanics

Advanced Quantum Mechanics PDF Author: Reinhold Blumel
Publisher: Jones & Bartlett Publishers
ISBN: 1449655904
Category : Medical
Languages : en
Pages : 437

Book Description
This book provides a coherent introduction to Gutzwiller’s trace formula accessible to well-prepared science, mathematics, and engineering students who have taken introductory courses in linear algebra, classical, and quantum mechanics. In addition to providing an enrichment of the undergraduate curriculum, this book may serve as the primary text for graduate courses on semiclassical methods. Since periodic-orbit expansions may be used to solve all types of wave systems that typically occur in mathematics, phyics, and engineering, this book is attractice for professional scientists and engineers as well. Following a thorough review of elementary concepts in classical and quantum mechanics the reader is introduced to the idea of classical periodic orbits, the foundation of Gutzwiller’s approach to quantum spectra. The trace formula itself is derived following an introduction to Feynman’s path integrals. Numerous applications, including the exact solutions of “unsolvable” one-dimensional quantum problems, illustrate the power of Gutzwiller’s method. Worked examples throughout the text illustrate the material and provide immediate “hands-on” demonstrations of tools and concepts just learned. Problems at the end of each section invite the reader to consolidate the acquired knowledge.

Functional Integrals in Quantum Field Theory and Statistical Physics

Functional Integrals in Quantum Field Theory and Statistical Physics PDF Author: V.N. Popov
Publisher: Springer Science & Business Media
ISBN: 9781402003073
Category : Science
Languages : en
Pages : 316

Book Description
Functional integration is one of the most powerful methods of contempo rary theoretical physics, enabling us to simplify, accelerate, and make clearer the process of the theoretician's analytical work. Interest in this method and the endeavour to master it creatively grows incessantly. This book presents a study of the application of functional integration methods to a wide range of contemporary theoretical physics problems. The concept of a functional integral is introduced as a method of quantizing finite-dimensional mechanical systems, as an alternative to ordinary quantum mechanics. The problems of systems quantization with constraints and the manifolds quantization are presented here for the first time in a monograph. The application of the functional integration methods to systems with an infinite number of degrees of freedom allows one to uniquely introduce and formulate the diagram perturbation theory in quantum field theory and statistical physics. This approach is significantly simpler than the widely accepted method using an operator approach.

Combinatorial Solution of One-dimensional Quantum Systems

Combinatorial Solution of One-dimensional Quantum Systems PDF Author: Domingos Humberto Urbano Marchetti
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Book Description