Author: Ulla Kopp
Publisher: Morgan & Claypool Publishers
ISBN: 1615042318
Category : Medical
Languages : en
Pages : 99
Book Description
The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References
Neural Control of Renal Function
Author: Ulla Kopp
Publisher: Morgan & Claypool Publishers
ISBN: 1615042318
Category : Medical
Languages : en
Pages : 99
Book Description
The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References
Publisher: Morgan & Claypool Publishers
ISBN: 1615042318
Category : Medical
Languages : en
Pages : 99
Book Description
The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References
Function of Renal Sympathetic Nerves
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Sympathetic overactivity is associated with the development of hypertension. Renal denervation (RDN) prevents or delays hypertension in a variety of animal models, which laid the groundwork for the introduction of RDN as a clinical therapy in humans. In 2007, a novel, minimally invasive RDN ablation catheter was first trialled in hypertensive patients, with a 93% success rate of lowering blood pressure for at least three years post-RDN. However, a large scale, sham-controlled clinical trial (Symplicity HTN -3) failed to show reductions in BP greater than sham. The aim of this research topic was to evaluate the efficacy and safety of RDN, to explore the contribution of both afferent and efferent renal nerve activity to hypertension and non-hypertension disorders, and to stimulate future research to better understand the function of the renal nerves and the effects of RDN by highlighting gaps in knowledge.
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Sympathetic overactivity is associated with the development of hypertension. Renal denervation (RDN) prevents or delays hypertension in a variety of animal models, which laid the groundwork for the introduction of RDN as a clinical therapy in humans. In 2007, a novel, minimally invasive RDN ablation catheter was first trialled in hypertensive patients, with a 93% success rate of lowering blood pressure for at least three years post-RDN. However, a large scale, sham-controlled clinical trial (Symplicity HTN -3) failed to show reductions in BP greater than sham. The aim of this research topic was to evaluate the efficacy and safety of RDN, to explore the contribution of both afferent and efferent renal nerve activity to hypertension and non-hypertension disorders, and to stimulate future research to better understand the function of the renal nerves and the effects of RDN by highlighting gaps in knowledge.
Essential Clinical Anesthesia
Author: Charles Vacanti
Publisher: Cambridge University Press
ISBN: 1139498401
Category : Medical
Languages : en
Pages : 1191
Book Description
The clinical practice of anesthesia has undergone many advances in the past few years, making this the perfect time for a new state-of-the-art anesthesia textbook for practitioners and trainees. The goal of this book is to provide a modern, clinically focused textbook giving rapid access to comprehensive, succinct knowledge from experts in the field. All clinical topics of relevance to anesthesiology are organized into 29 sections consisting of more than 180 chapters. The print version contains 166 chapters that cover all of the essential clinical topics, while an additional 17 chapters on subjects of interest to the more advanced practitioner can be freely accessed at www.cambridge.org/vacanti. Newer techniques such as ultrasound nerve blocks, robotic surgery and transesophageal echocardiography are included, and numerous illustrations and tables assist the reader in rapidly assimilating key information. This authoritative text is edited by distinguished Harvard Medical School faculty, with contributors from many of the leading academic anesthesiology departments in the United States and an introduction from Dr S. R. Mallampati. This book is your essential companion when preparing for board review and recertification exams and in your daily clinical practice.
Publisher: Cambridge University Press
ISBN: 1139498401
Category : Medical
Languages : en
Pages : 1191
Book Description
The clinical practice of anesthesia has undergone many advances in the past few years, making this the perfect time for a new state-of-the-art anesthesia textbook for practitioners and trainees. The goal of this book is to provide a modern, clinically focused textbook giving rapid access to comprehensive, succinct knowledge from experts in the field. All clinical topics of relevance to anesthesiology are organized into 29 sections consisting of more than 180 chapters. The print version contains 166 chapters that cover all of the essential clinical topics, while an additional 17 chapters on subjects of interest to the more advanced practitioner can be freely accessed at www.cambridge.org/vacanti. Newer techniques such as ultrasound nerve blocks, robotic surgery and transesophageal echocardiography are included, and numerous illustrations and tables assist the reader in rapidly assimilating key information. This authoritative text is edited by distinguished Harvard Medical School faculty, with contributors from many of the leading academic anesthesiology departments in the United States and an introduction from Dr S. R. Mallampati. This book is your essential companion when preparing for board review and recertification exams and in your daily clinical practice.
Renal Denervation
Author: Richard R. Heuser
Publisher: Springer
ISBN: 1447152239
Category : Medical
Languages : en
Pages : 203
Book Description
Hypertension remains the leading cause of cardiovascular morbidity and mortality in spite of current medical therapies. It has been estimated that 50% of Western civilization has hypertension and approximately 20% of patients have resistant hypertension. Renal denervation (RDN) is a minimally invasive, endovascular catheter based procedure using radiofrequency ablation aimed at treating resistant hypertension. Early studies show a high degree of effectiveness in renal denervation to treat hypertension. This book examines renal pathophysiology and the rationale for renal denervation, as well as possible long term benefits and risks of this new therapy. The myriad of devices involved in the evolution of this therapy are discussed and the book concludes with analyses of the cost effectiveness and future applications.
Publisher: Springer
ISBN: 1447152239
Category : Medical
Languages : en
Pages : 203
Book Description
Hypertension remains the leading cause of cardiovascular morbidity and mortality in spite of current medical therapies. It has been estimated that 50% of Western civilization has hypertension and approximately 20% of patients have resistant hypertension. Renal denervation (RDN) is a minimally invasive, endovascular catheter based procedure using radiofrequency ablation aimed at treating resistant hypertension. Early studies show a high degree of effectiveness in renal denervation to treat hypertension. This book examines renal pathophysiology and the rationale for renal denervation, as well as possible long term benefits and risks of this new therapy. The myriad of devices involved in the evolution of this therapy are discussed and the book concludes with analyses of the cost effectiveness and future applications.
Anatomy and Physiology
Author: J. Gordon Betts
Publisher:
ISBN: 9781947172807
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781947172807
Category :
Languages : en
Pages : 0
Book Description
Acute Kidney Injury and Regenerative Medicine
Author: Yoshio Terada
Publisher: Springer Nature
ISBN: 981151108X
Category : Medical
Languages : en
Pages : 390
Book Description
This book presents up-to-date information on the clinical-pathophysiological features of acute renal injury and discusses the KDIGO diagnostic criteria, as well as novel experimental findings, including in the area of regenerative medicine. It also highlights the clinical-pathophysiological importance of AKI in clinical settings, including differential diagnoses and management of AKI. In the past, the pathology associated with sudden renal impairment was characterized as acute renal failure (ARF). However, in the 2000s, the joint efforts of specialists in fields including nephrology, intensive care medicine, and cardiovascular medicine led to the introduction of a novel concept known as acute kidney injury (AKI). As medical care progressed, patients such as high-risk elderly subjects who were not deemed to be candidates for invasive therapy came to be treated in intensive care units (ICUs). As a result, kidney injury as a subset of multiple organ failure was re-considered as AKI, especially in intensive care medicine. AKI was then proposed as a novel disease concept to emphasize the importance of early diagnosis and early intervention to improve prognosis.Presenting novel features, such as the definition of AKI, risk factors and management; biomarkers, such as neutrophil gelatinase-associated lipocalin (NGAL) and L-type fatty acid-binding protein (L-FABP); long-term outcomes of AKI; as well as renal regeneration using iPS cell, manipulation of embryonic genes, and Xenotransplanted embryonic kidney, this book is of interest to all physicians and researchers in this field around the globe.
Publisher: Springer Nature
ISBN: 981151108X
Category : Medical
Languages : en
Pages : 390
Book Description
This book presents up-to-date information on the clinical-pathophysiological features of acute renal injury and discusses the KDIGO diagnostic criteria, as well as novel experimental findings, including in the area of regenerative medicine. It also highlights the clinical-pathophysiological importance of AKI in clinical settings, including differential diagnoses and management of AKI. In the past, the pathology associated with sudden renal impairment was characterized as acute renal failure (ARF). However, in the 2000s, the joint efforts of specialists in fields including nephrology, intensive care medicine, and cardiovascular medicine led to the introduction of a novel concept known as acute kidney injury (AKI). As medical care progressed, patients such as high-risk elderly subjects who were not deemed to be candidates for invasive therapy came to be treated in intensive care units (ICUs). As a result, kidney injury as a subset of multiple organ failure was re-considered as AKI, especially in intensive care medicine. AKI was then proposed as a novel disease concept to emphasize the importance of early diagnosis and early intervention to improve prognosis.Presenting novel features, such as the definition of AKI, risk factors and management; biomarkers, such as neutrophil gelatinase-associated lipocalin (NGAL) and L-type fatty acid-binding protein (L-FABP); long-term outcomes of AKI; as well as renal regeneration using iPS cell, manipulation of embryonic genes, and Xenotransplanted embryonic kidney, this book is of interest to all physicians and researchers in this field around the globe.
Kidney and Blood Pressure Regulation
Author: Hiromichi Suzuki (M.D.)
Publisher: Karger Medical and Scientific Publishers
ISBN: 3805577516
Category : Medical
Languages : en
Pages : 181
Book Description
Chronic kidney disease is one of the world's major public health problems, and the prevalence of kidney failure is rising steadily. Among the risk factors for a faster progression of renal disease are hypertension and proteinuria, many studies clearly demonstrating that hypertension is both a cause and consequence of chronic kidney disease. Namely, renal blood pressure regulation seems to be involved in five major pathophysiological mechanisms (all closely related to the renin-angiotensin system): Pressure-natriuresis, renal sympathetic nervous system, renal blood flow, intraglomerular pressure and tubuloglomerular feedback. This book reviews experimental data which form the basis of our current understanding of the association between hypertension and kidney diseases: The pathogenesis of increased blood pressure, the mechanisms by which systemic hypertension promotes progressive kidney failure, and the impact of antihypertensive agents on experimental renal mechanisms involved in hypertension. Furthermore, the role of angiotensin II receptor blockers in both the control of systemic blood pressure and the reduction of proteinuria is examined in an attempt to define optimal therapeutic strategies to prevent the otherwise inexorable deterioration of renal function in patients with chronic kidney disease.
Publisher: Karger Medical and Scientific Publishers
ISBN: 3805577516
Category : Medical
Languages : en
Pages : 181
Book Description
Chronic kidney disease is one of the world's major public health problems, and the prevalence of kidney failure is rising steadily. Among the risk factors for a faster progression of renal disease are hypertension and proteinuria, many studies clearly demonstrating that hypertension is both a cause and consequence of chronic kidney disease. Namely, renal blood pressure regulation seems to be involved in five major pathophysiological mechanisms (all closely related to the renin-angiotensin system): Pressure-natriuresis, renal sympathetic nervous system, renal blood flow, intraglomerular pressure and tubuloglomerular feedback. This book reviews experimental data which form the basis of our current understanding of the association between hypertension and kidney diseases: The pathogenesis of increased blood pressure, the mechanisms by which systemic hypertension promotes progressive kidney failure, and the impact of antihypertensive agents on experimental renal mechanisms involved in hypertension. Furthermore, the role of angiotensin II receptor blockers in both the control of systemic blood pressure and the reduction of proteinuria is examined in an attempt to define optimal therapeutic strategies to prevent the otherwise inexorable deterioration of renal function in patients with chronic kidney disease.
Basic Physiology for Anaesthetists
Author: David Chambers
Publisher: Cambridge University Press
ISBN: 1108463991
Category : Medical
Languages : en
Pages : 469
Book Description
Easily understood, up-to-date and clinically relevant, this book provides junior anaesthetists with an essential physiology resource.
Publisher: Cambridge University Press
ISBN: 1108463991
Category : Medical
Languages : en
Pages : 469
Book Description
Easily understood, up-to-date and clinically relevant, this book provides junior anaesthetists with an essential physiology resource.
PanVascular Medicine
Author: Peter Lanzer
Publisher: Springer
ISBN: 9783642370779
Category : Medical
Languages : en
Pages : 5004
Book Description
Vascular management and care has become a truly multidisciplinary enterprise as the number of specialists involved in the treatment of patients with vascular diseases has steadily increased. While in the past, treatments were delivered by individual specialists, in the twenty-first century a team approach is without doubt the most effective strategy. In order to promote professional excellence in this dynamic and rapidly evolving field, a shared knowledge base and interdisciplinary standards need to be established. Pan Vascular Medicine, 2nd edition has been designed to offer such an interdisciplinary platform, providing vascular specialists with state-of-the art descriptive and procedural knowledge. Basic science, diagnostics, and therapy are all comprehensively covered. In a series of succinct, clearly written chapters, renowned specialists introduce and comment on the current international guidelines and present up-to-date reviews of all aspects of vascular care.
Publisher: Springer
ISBN: 9783642370779
Category : Medical
Languages : en
Pages : 5004
Book Description
Vascular management and care has become a truly multidisciplinary enterprise as the number of specialists involved in the treatment of patients with vascular diseases has steadily increased. While in the past, treatments were delivered by individual specialists, in the twenty-first century a team approach is without doubt the most effective strategy. In order to promote professional excellence in this dynamic and rapidly evolving field, a shared knowledge base and interdisciplinary standards need to be established. Pan Vascular Medicine, 2nd edition has been designed to offer such an interdisciplinary platform, providing vascular specialists with state-of-the art descriptive and procedural knowledge. Basic science, diagnostics, and therapy are all comprehensively covered. In a series of succinct, clearly written chapters, renowned specialists introduce and comment on the current international guidelines and present up-to-date reviews of all aspects of vascular care.
Hypertension and Heart Failure
Author: Maria Dorobantu
Publisher: Springer
ISBN: 3319933205
Category : Medical
Languages : en
Pages : 408
Book Description
This book explains how hypertension affects 20-50% of the adult population in developed countries. Heart failure is the result of the hypertension's effects on the heart and it represents a growing public health problem. In this context the international scientific community is continuously struggling to develop better strategies in screening, diagnosing and treating hypertension and its deleterious effects. Thus, this field is continuously changing, with new important information being added constantly. This volume will offer both insights into the intimate mechanisms of transition from hypertension to heart failure and clinical practice advice on the prevention and treatment of heart failure in hypertensive population. The mechanisms which explain the progression from hypertension to heart failure will be also covered exhaustively by offering two chapters referring to the diagnosis of heart failure in hypertensive population and one regarding echocardiography which is the most frequently used imaging method in clinical practice. The reader will be also provided with information on cardiovascular magnetic resonance which has the unique advantage of differentiating hypertensive heart failure from other pathologies associated with increased myocardial thickness. This book is a useful tool for clinicians but also to the research community interested in heart failure and consequences of hypertension on heart who want to be up-to-date with the new developments in the field.
Publisher: Springer
ISBN: 3319933205
Category : Medical
Languages : en
Pages : 408
Book Description
This book explains how hypertension affects 20-50% of the adult population in developed countries. Heart failure is the result of the hypertension's effects on the heart and it represents a growing public health problem. In this context the international scientific community is continuously struggling to develop better strategies in screening, diagnosing and treating hypertension and its deleterious effects. Thus, this field is continuously changing, with new important information being added constantly. This volume will offer both insights into the intimate mechanisms of transition from hypertension to heart failure and clinical practice advice on the prevention and treatment of heart failure in hypertensive population. The mechanisms which explain the progression from hypertension to heart failure will be also covered exhaustively by offering two chapters referring to the diagnosis of heart failure in hypertensive population and one regarding echocardiography which is the most frequently used imaging method in clinical practice. The reader will be also provided with information on cardiovascular magnetic resonance which has the unique advantage of differentiating hypertensive heart failure from other pathologies associated with increased myocardial thickness. This book is a useful tool for clinicians but also to the research community interested in heart failure and consequences of hypertension on heart who want to be up-to-date with the new developments in the field.