Full Core, Heterogeneous, Time Dependent Neutron Transport Calculations with the 3D Code DeCART PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Full Core, Heterogeneous, Time Dependent Neutron Transport Calculations with the 3D Code DeCART PDF full book. Access full book title Full Core, Heterogeneous, Time Dependent Neutron Transport Calculations with the 3D Code DeCART by Mathieu Hursin. Download full books in PDF and EPUB format.

Full Core, Heterogeneous, Time Dependent Neutron Transport Calculations with the 3D Code DeCART

Full Core, Heterogeneous, Time Dependent Neutron Transport Calculations with the 3D Code DeCART PDF Author: Mathieu Hursin
Publisher:
ISBN:
Category :
Languages : en
Pages : 264

Book Description
The current state of the art in reactor physics methods to assess safety, fuel failure, and operability margins for Design Basis Accidents (DBAs) for Light Water Reactors (LWRs) rely upon the coupling of nodal neutronics and one-dimensional thermal hydraulic system codes. The neutronic calculations use a multi-step approach in which the assembly homogenized macroscopic cross sections and kinetic parameters are first calculated using a lattice code for the range of conditions (temperatures, burnup, control rod position, etc ...) anticipated during the transient. The core calculation is then performed using the few group cross sections in a core simulator which uses some type of coarse mesh nodal method. The multi-step approach was identified as inadequate for several applications such as the design of MOX cores and other highly hetereogeneous, high leakage core designs. Because of the considerable advances in computing power over the last several years, there has been interest in high-fidelity solutions of the Boltzmann Transport equation. A practical approach developed for high-fidelity solutions of the 3D transport equation is the 2D-1D methodology in which the method of characteristics (MOC) is applied to the heterogeneous 2D planar problem and a lower order solution is applied to the axial problem which is, generally, more uniform. This approach was implemented in the DeCART code. Recently, there has been interest in extending such approach to the simulations of design basis accidents, such as control rod ejection accidents also known as reactivity initiated accidents (RIA). The current 2D-1D algorithm available in DeCART only provide 1D axial solution based on the diffusion theory whose accuracy deteriorates in case of strong flux gradient that can potentially be observed during RIA simulations. The primary ojective of the dissertation is to improve the accuracy and range of applicability of the DeCART code and to investigate its ability to perform a full core transient analysis of a realistic RIA. The specific research accomplishments of this work include: * The addition of more accurate 2D-1D coupling and transverse leakage splitting options to avoid the occurrence of negative source terms in the 2D MOC equations and the subsequent failure of the DeCART calculation and the improvement of the convergence of the 2D-1D method. * The implementation of a higher order transport axial solver based on NEM-Sn derivation of the Boltzmann equation. * Improved handling of thermal hydraulic feedbacks by DeCART during transient calculations. * A consistent comparison of the DeCART transient methodology with the current multistep approach (PARCS) for a realistic full core RIA. An efficient direct whole core transport calculation method involving the NEM-Sn formulation for the axial solution and the MOC for the 2-D radial solution was developed. In this solution method, the Sn neutron transport equations were developed within the framework of the Nodal Expansion Method. A RIA analysis was performed and the DeCART results were compared to the current generation of LWR core analysis methods represented by the PARCS code. In general there is good overall agreement in terms of global information from DeCART and PARCS for the RIA considered. However, the higher fidelity solution in DeCART provides a better spatial resolution that is expected to improve the accuracy of fuel performance calculations and to enable reducing the margin in several important reactor safety analysis events such as the RIA.

Full Core, Heterogeneous, Time Dependent Neutron Transport Calculations with the 3D Code DeCART

Full Core, Heterogeneous, Time Dependent Neutron Transport Calculations with the 3D Code DeCART PDF Author: Mathieu Hursin
Publisher:
ISBN:
Category :
Languages : en
Pages : 264

Book Description
The current state of the art in reactor physics methods to assess safety, fuel failure, and operability margins for Design Basis Accidents (DBAs) for Light Water Reactors (LWRs) rely upon the coupling of nodal neutronics and one-dimensional thermal hydraulic system codes. The neutronic calculations use a multi-step approach in which the assembly homogenized macroscopic cross sections and kinetic parameters are first calculated using a lattice code for the range of conditions (temperatures, burnup, control rod position, etc ...) anticipated during the transient. The core calculation is then performed using the few group cross sections in a core simulator which uses some type of coarse mesh nodal method. The multi-step approach was identified as inadequate for several applications such as the design of MOX cores and other highly hetereogeneous, high leakage core designs. Because of the considerable advances in computing power over the last several years, there has been interest in high-fidelity solutions of the Boltzmann Transport equation. A practical approach developed for high-fidelity solutions of the 3D transport equation is the 2D-1D methodology in which the method of characteristics (MOC) is applied to the heterogeneous 2D planar problem and a lower order solution is applied to the axial problem which is, generally, more uniform. This approach was implemented in the DeCART code. Recently, there has been interest in extending such approach to the simulations of design basis accidents, such as control rod ejection accidents also known as reactivity initiated accidents (RIA). The current 2D-1D algorithm available in DeCART only provide 1D axial solution based on the diffusion theory whose accuracy deteriorates in case of strong flux gradient that can potentially be observed during RIA simulations. The primary ojective of the dissertation is to improve the accuracy and range of applicability of the DeCART code and to investigate its ability to perform a full core transient analysis of a realistic RIA. The specific research accomplishments of this work include: * The addition of more accurate 2D-1D coupling and transverse leakage splitting options to avoid the occurrence of negative source terms in the 2D MOC equations and the subsequent failure of the DeCART calculation and the improvement of the convergence of the 2D-1D method. * The implementation of a higher order transport axial solver based on NEM-Sn derivation of the Boltzmann equation. * Improved handling of thermal hydraulic feedbacks by DeCART during transient calculations. * A consistent comparison of the DeCART transient methodology with the current multistep approach (PARCS) for a realistic full core RIA. An efficient direct whole core transport calculation method involving the NEM-Sn formulation for the axial solution and the MOC for the 2-D radial solution was developed. In this solution method, the Sn neutron transport equations were developed within the framework of the Nodal Expansion Method. A RIA analysis was performed and the DeCART results were compared to the current generation of LWR core analysis methods represented by the PARCS code. In general there is good overall agreement in terms of global information from DeCART and PARCS for the RIA considered. However, the higher fidelity solution in DeCART provides a better spatial resolution that is expected to improve the accuracy of fuel performance calculations and to enable reducing the margin in several important reactor safety analysis events such as the RIA.

Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation

Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation PDF Author: Liangzhi Cao
Publisher: Woodhead Publishing
ISBN: 0128182229
Category : Technology & Engineering
Languages : en
Pages : 294

Book Description
Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation presents the latest deterministic numerical methods for neutron transport equations (NTEs) with complex geometry, which are of great demand in recent years due to the rapid development of advanced nuclear reactor concepts and high-performance computational technologies. This book covers the wellknown methods proposed and used in recent years, not only theoretical modeling but also numerical results. This book provides readers with a very thorough understanding of unstructured neutron transport calculations and enables them to develop their own computational codes. The fundamentals, numerical discretization methods, algorithms, and numerical results are discussed. Researchers and engineers from utilities and research institutes are provided with examples on how to model an advanced nuclear reactor, which they can then apply to their own research projects and lab settings. Combines the theoretical models with numerical methods and results in one complete resource Presents the latest progress on the topic in an easy-to-navigate format

Reactor Physics: Methods and Applications

Reactor Physics: Methods and Applications PDF Author: Tengfei Zhang
Publisher: Frontiers Media SA
ISBN: 2889764575
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description


Transactions of the American Nuclear Society

Transactions of the American Nuclear Society PDF Author: American Nuclear Society
Publisher:
ISBN:
Category : Nuclear engineering
Languages : en
Pages : 850

Book Description


The Physics of Nuclear Reactors

The Physics of Nuclear Reactors PDF Author: Serge Marguet
Publisher: Springer
ISBN: 3319595601
Category : Science
Languages : en
Pages : 1462

Book Description
This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.

Methods of Steady-state Reactor Physics in Nuclear Design

Methods of Steady-state Reactor Physics in Nuclear Design PDF Author: Rudi J. J. Stamm'ler
Publisher:
ISBN: 9780126633207
Category : Technology & Engineering
Languages : en
Pages : 506

Book Description


Effective Computation in Physics

Effective Computation in Physics PDF Author: Anthony Scopatz
Publisher: "O'Reilly Media, Inc."
ISBN: 1491901586
Category : Science
Languages : en
Pages : 567

Book Description
More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures

Nuclear Power Plant Design and Analysis Codes

Nuclear Power Plant Design and Analysis Codes PDF Author: Jun Wang
Publisher: Woodhead Publishing
ISBN: 0128181915
Category : Technology & Engineering
Languages : en
Pages : 612

Book Description
Nuclear Power Plant Design and Analysis Codes: Development, Validation, and Application presents the latest research on the most widely used nuclear codes and the wealth of successful accomplishments which have been achieved over the past decades by experts in the field. Editors Wang, Li,Allison, and Hohorst and their team of authors provide readers with a comprehensive understanding of nuclear code development and how to apply it to their work and research to make their energy production more flexible, economical, reliable and safe.Written in an accessible and practical way, each chapter considers strengths and limitations, data availability needs, verification and validation methodologies and quality assurance guidelines to develop thorough and robust models and simulation tools both inside and outside a nuclear setting. This book benefits those working in nuclear reactor physics and thermal-hydraulics, as well as those involved in nuclear reactor licensing. It also provides early career researchers with a solid understanding of fundamental knowledge of mainstream nuclear modelling codes, as well as the more experienced engineers seeking advanced information on the best solutions to suit their needs. Captures important research conducted over last few decades by experts and allows new researchers and professionals to learn from the work of their predecessors Presents the most recent updates and developments, including the capabilities, limitations, and future development needs of all codes Incudes applications for each code to ensure readers have complete knowledge to apply to their own setting

Handbook of Nuclear Engineering

Handbook of Nuclear Engineering PDF Author: Dan Gabriel Cacuci
Publisher: Springer Science & Business Media
ISBN: 0387981306
Category : Science
Languages : en
Pages : 3701

Book Description
This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.

Neutron Physics

Neutron Physics PDF Author: Paul Reuss
Publisher:
ISBN: 2759800415
Category : Science
Languages : en
Pages : 669

Book Description
Originally just an offshoot of nuclear physics, neutron physics soon became a branch of physics in its own right. It deals with the movement of neutrons in nuclear reactors and all the nuclear reactions they trigger there, particularly the fission of heavy nuclei which starts a chain reaction to produce energy. Neutron Physics covers the whole range of knowledge of this complex science, discussing the basics of neutron physics and some principles of neutron physics calculations. Because neutron physics is the essential part of reactor physics, it is the main subject taught to students of Nuclear Engineering. This book takes an instructional approach for that purpose. Neutron Physics is also intended for all physicists and engineers involved in development or operational aspects of nuclear power.