Fuel Economy and Greenhouse Gas Reduction Potentials of Advanced Combustion Modes in Light-duty Vehicles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fuel Economy and Greenhouse Gas Reduction Potentials of Advanced Combustion Modes in Light-duty Vehicles PDF full book. Access full book title Fuel Economy and Greenhouse Gas Reduction Potentials of Advanced Combustion Modes in Light-duty Vehicles by Scott James Curran. Download full books in PDF and EPUB format.

Fuel Economy and Greenhouse Gas Reduction Potentials of Advanced Combustion Modes in Light-duty Vehicles

Fuel Economy and Greenhouse Gas Reduction Potentials of Advanced Combustion Modes in Light-duty Vehicles PDF Author: Scott James Curran
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages : 0

Book Description
Vehicle fuel efficiency and emissions regulations are driving a radical shift in the need for high efficiency powertrains along with control of criteria air pollutants and greenhouse gases. High efficiency powertrains including vehicle electrification, engine downsizing, and advanced combustion concepts all seek to accomplish these goals. Homogeneous charge compression ignition (HCCI) concepts have been proposed have not been able to demonstrate the controllability to operate over a sufficient engine speed and load range to make it practical for implementation in production vehicles. In-cylinder blending of gasoline and diesel to achieve reactivity controlled compression ignition (RCCI) has been shown to reduce NOX and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. The potential for advanced combustion concepts such as RCCI to reduce drive cycle fuel economy and emissions is not clearly understood and is explored in this research by simulating the fuel economy and emissions for a multi-mode RCCI-enabled vehicle operating over a variety of U.S. drive cycles using experimental engine maps for multi-mode RCCI, CDC and a 2009 port-fuel injected (PFI) gasoline engine. Simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. RCCI fuel economy simulation results are compared to the same vehicle powered by a representative 2009 PFI gasoline engine over multiple drive cycles Engine-out drive cycle emissions are compared to CDC and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized. The well-to-wheel energy and greenhouse gas emissions from these drive cycle simulations running carious amounts of biofuels are examined and compared to the state-of-the art in conventional, electric and hybrid powertrains.

Fuel Economy and Greenhouse Gas Reduction Potentials of Advanced Combustion Modes in Light-duty Vehicles

Fuel Economy and Greenhouse Gas Reduction Potentials of Advanced Combustion Modes in Light-duty Vehicles PDF Author: Scott James Curran
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages : 0

Book Description
Vehicle fuel efficiency and emissions regulations are driving a radical shift in the need for high efficiency powertrains along with control of criteria air pollutants and greenhouse gases. High efficiency powertrains including vehicle electrification, engine downsizing, and advanced combustion concepts all seek to accomplish these goals. Homogeneous charge compression ignition (HCCI) concepts have been proposed have not been able to demonstrate the controllability to operate over a sufficient engine speed and load range to make it practical for implementation in production vehicles. In-cylinder blending of gasoline and diesel to achieve reactivity controlled compression ignition (RCCI) has been shown to reduce NOX and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. The potential for advanced combustion concepts such as RCCI to reduce drive cycle fuel economy and emissions is not clearly understood and is explored in this research by simulating the fuel economy and emissions for a multi-mode RCCI-enabled vehicle operating over a variety of U.S. drive cycles using experimental engine maps for multi-mode RCCI, CDC and a 2009 port-fuel injected (PFI) gasoline engine. Simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. RCCI fuel economy simulation results are compared to the same vehicle powered by a representative 2009 PFI gasoline engine over multiple drive cycles Engine-out drive cycle emissions are compared to CDC and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized. The well-to-wheel energy and greenhouse gas emissions from these drive cycle simulations running carious amounts of biofuels are examined and compared to the state-of-the art in conventional, electric and hybrid powertrains.

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309373913
Category : Science
Languages : en
Pages : 812

Book Description
The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.

Reducing Fuel Consumption and Greenhouse Gas Emissions of Medium- and Heavy-Duty Vehicles, Phase Two

Reducing Fuel Consumption and Greenhouse Gas Emissions of Medium- and Heavy-Duty Vehicles, Phase Two PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309496381
Category : Science
Languages : en
Pages : 399

Book Description
Medium- and heavy-duty trucks, motor coaches, and transit buses - collectively, "medium- and heavy-duty vehicles", or MHDVs - are used in every sector of the economy. The fuel consumption and greenhouse gas emissions of MHDVs have become a focus of legislative and regulatory action in the past few years. This study is a follow-on to the National Research Council's 2010 report, Technologies and Approaches to Reducing the Fuel Consumption of Medium-and Heavy-Duty Vehicles. That report provided a series of findings and recommendations on the development of regulations for reducing fuel consumption of MHDVs. On September 15, 2011, NHTSA and EPA finalized joint Phase I rules to establish a comprehensive Heavy-Duty National Program to reduce greenhouse gas emissions and fuel consumption for on-road medium- and heavy-duty vehicles. As NHTSA and EPA began working on a second round of standards, the National Academies issued another report, Reducing the Fuel Consumption and Greenhouse Gas Emissions of Medium- and Heavy-Duty Vehicles, Phase Two: First Report, providing recommendations for the Phase II standards. This third and final report focuses on a possible third phase of regulations to be promulgated by these agencies in the next decade.

Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Assessment of Fuel Economy Technologies for Light-Duty Vehicles PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309156076
Category : Science
Languages : en
Pages : 373

Book Description
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Potential for Reducing Fuel Consumption and Greenhouse Gas Emissions from the U.S. Light-duty Vehicle Fleet

Potential for Reducing Fuel Consumption and Greenhouse Gas Emissions from the U.S. Light-duty Vehicle Fleet PDF Author: Stéphane Alfred Bassène
Publisher:
ISBN:
Category :
Languages : en
Pages : 140

Book Description


Assessment of Technologies for Improving Light-Duty Vehicle Fuel Economy⬠2025-2035

Assessment of Technologies for Improving Light-Duty Vehicle Fuel Economy⬠2025-2035 PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher:
ISBN: 9780309371223
Category :
Languages : en
Pages : 468

Book Description
From daily commutes to cross-country road trips, millions of light-duty vehicles are on the road every day. The transportation sector is one of the United States’ largest sources of greenhouse gas emissions, and fuel is an important cost for drivers. The period from 2025-2035 could bring the most fundamental transformation in the 100-plus year history of the automobile. Battery electric vehicle costs are likely to fall and reach parity with internal combustion engine vehicles. New generations of fuel cell vehicles will be produced. Connected and automated vehicle technologies will become more common, including likely deployment of some fully automated vehicles. These new categories of vehicles will for the first time assume a major portion of new vehicle sales, while internal combustion engine vehicles with improved powertrain, design, and aerodynamics will continue to be an important part of new vehicle sales and fuel economy improvement. This study is a technical evaluation of the potential for internal combustion engine, hybrid, battery electric, fuel cell, nonpowertrain, and connected and automated vehicle technologies to contribute to efficiency in 2025-2035. In addition to making findings and recommendations related to technology cost and capabilities, Assessment of Technologies for Improving Light-Duty Vehicle Fuel Economy - 2025-2035 considers the impacts of changes in consumer behavior and regulatory regimes.

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309159474
Category : Science
Languages : en
Pages : 251

Book Description
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.

Light Vehicles

Light Vehicles PDF Author: Marc R. Ledbetter
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages : 88

Book Description


Light-duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards - Final Rule, Us Environmental Protection Agency Regulation, 2018

Light-duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards - Final Rule, Us Environmental Protection Agency Regulation, 2018 PDF Author: Law Library
Publisher: Createspace Independent Publishing Platform
ISBN: 9781726017275
Category :
Languages : en
Pages : 684

Book Description
Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards - Final Rule (US Environmental Protection Agency Regulation) (EPA) (2018 Edition) The Law Library presents the complete text of the Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards - Final Rule (US Environmental Protection Agency Regulation) (EPA) (2018 Edition). Updated as of May 29, 2018 EPA and NHTSA are issuing this joint Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint Final Rule is consistent with the National Fuel Efficiency Policy announced by President Obama on May 19, 2009, responding to the country's critical need to address global climate change and to reduce oil consumption. EPA is finalizing greenhouse gas emissions standards under the Clean Air Act, and NHTSA is finalizing Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended. These standards apply to passenger cars, light-duty trucks, and medium-duty passenger vehicles, covering model years 2012 through 2016, and represent a harmonized and consistent National Program. Under the National Program, automobile manufacturers will be able to build a single light-duty national fleet that satisfies all requirements under both programs while ensuring that consumers still have a full range of vehicle choices. NHTSA's final rule also constitutes the agency's Record of Decision for purposes of its National Environmental Policy Act (NEPA) analysis. This book contains: - The complete text of the Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards - Final Rule (US Environmental Protection Agency Regulation) (EPA) (2018 Edition) - A table of contents with the page number of each section

Potential of Electric Propulsion Systems to Reduce Petroleum Use and Greenhouse Gas Emissions in the U.S. Light-duty Vehicle Fleet

Potential of Electric Propulsion Systems to Reduce Petroleum Use and Greenhouse Gas Emissions in the U.S. Light-duty Vehicle Fleet PDF Author: Michael Khusid
Publisher:
ISBN:
Category :
Languages : en
Pages : 78

Book Description
In the summer of 2008, the United States of America experienced an oil shock, first of a kind since 1970s. The American public became sensitized to the concerns about foreign oil supply and climate change and global warming, and to the role of transportation in emissions of carbon dioxide and other greenhouse gases (GHG). Several proposed federal policies impose stringent limits on the transportation sector, in terms of fuel consumption and GHG emissions. Within transportation sector, light duty vehicles (LDVs) - cars, light trucks and SUVs - currently emit the most GHGs. Hybrid technology emerged as a promising option to address several of these challenges. A modern hybrid electric vehicle (HEV) offers significantly better fuel economy together with lower levels of pollutant and CO2 emissions. HEVs are currently categorized as Advanced Technology Partial Zero Emission Vehicles (AT-PZEV) by California Air Resource Board. Recently, a new generation of vehicles, plug-in hybrid electric vehicles (PHEV), has been announced in the immediate future by major auto manufacturers. While HEVs have a relatively small battery that is recharged by the engine or by regenerative braking, a larger battery of a PHEV and a charger allows a vehicle owner to recharge the battery from the electric grid. The plug-in technology further increases fuel economy and reduces emissions from the tailpipe. For example, a Chevrolet Volt PHEV is expected to be launched as 2011 model with 40 mile allelectric travel with no tailpipe emissions. However, there are multiple challenges associated with the new technology. HEVs and PHEVs incur higher costs due to additional components, such as electric motors and motor controllers, and a battery. Today's batteries provide energy storage density hundred times lower than that of gasoline. Electricity consumed by hybrids is generated by coal and other fossil fuel power plants that emit harmful chemicals and greenhouse gases. The infrastructure for electric cars is at the infancy stage. Some government policies designed to introduce all-electric cars, such as the California ZEV mandate of the late 1990s, failed to introduce a sustained number of electric vehicles to the market. To provide an integrated approach to the causes and effects of electrified powertrains, two plausible scenarios of advanced vehicle market penetration were developed. Federal policies and consumer preferences were considered as primary drivers. Biofuels were considered alongside fossil fuels as primary energy sources for transportation. Rapid adoption of PHEVs was found to cause a perceptible, but not a significant increase in electric power demand. The scenarios demonstrated ability to achieve fuel economy milestones and quantified the challenge of achieving 80% reduction in greenhouse gas emissions by 2050.