Frontiers in Materials Modelling and Design PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Frontiers in Materials Modelling and Design PDF full book. Access full book title Frontiers in Materials Modelling and Design by Vijay Kumar. Download full books in PDF and EPUB format.

Frontiers in Materials Modelling and Design

Frontiers in Materials Modelling and Design PDF Author: Vijay Kumar
Publisher: Springer Science & Business Media
ISBN: 3642804780
Category : Science
Languages : en
Pages : 448

Book Description
It is about fifteen years since we started hearing about Computational Ma terials Science and Materials Modelling and Design. Fifteen years is a long time and all of us realise that the use of computational methods in the design of materials has not been rapid enough. We also know the reasons for this. Mate rials properties are not dependent on a single phenomenon. The properties of materials cover a wide range from electronic, thermal, mechanical to chemical and electro-chemical. Each of these class of properties depend on specific phe nomenon that takes place at different scales or levels of length from sub atomic to visible length levels. The energies controlling the phenomena also varies widely from a fraction of an electron volt to many joules. The complexity of materials are such that while models and methods for treating individual phenomenon have been perfected, incorporating them into a single programme taking into account the synergism is a formidable task. Two specific areas where the progress has been very rapid and substantive are prediction of phase stability and phase diagrams and embrittlement of steels by metalloids. The first three sections of the book contain papers which review the theoreti cal principles underlying materials modeling and simulations and show how they can be applied to the problems just mentioned. There is now a strong interest in designing new materials starting from nanoparticles and clusters.

Frontiers in Materials Modelling and Design

Frontiers in Materials Modelling and Design PDF Author: Vijay Kumar
Publisher: Springer Science & Business Media
ISBN: 3642804780
Category : Science
Languages : en
Pages : 448

Book Description
It is about fifteen years since we started hearing about Computational Ma terials Science and Materials Modelling and Design. Fifteen years is a long time and all of us realise that the use of computational methods in the design of materials has not been rapid enough. We also know the reasons for this. Mate rials properties are not dependent on a single phenomenon. The properties of materials cover a wide range from electronic, thermal, mechanical to chemical and electro-chemical. Each of these class of properties depend on specific phe nomenon that takes place at different scales or levels of length from sub atomic to visible length levels. The energies controlling the phenomena also varies widely from a fraction of an electron volt to many joules. The complexity of materials are such that while models and methods for treating individual phenomenon have been perfected, incorporating them into a single programme taking into account the synergism is a formidable task. Two specific areas where the progress has been very rapid and substantive are prediction of phase stability and phase diagrams and embrittlement of steels by metalloids. The first three sections of the book contain papers which review the theoreti cal principles underlying materials modeling and simulations and show how they can be applied to the problems just mentioned. There is now a strong interest in designing new materials starting from nanoparticles and clusters.

New Frontiers in Multiscale Modelling of Advanced Materials

New Frontiers in Multiscale Modelling of Advanced Materials PDF Author: Simone Taioli
Publisher: Frontiers Media SA
ISBN: 2889197557
Category : Engineering (General). Civil engineering (General)
Languages : en
Pages : 93

Book Description
Atomistic simulations, based on ab-initio and semi-empirical approaches, are nowadays widespread in many areas of physics, chemistry and, more recently, biology. Improved algorithms and increased computational power widened the areas of application of these computational methods to extended materials of technological interest, in particular allowing unprecedented access to the first-principles investigation of their electronic, optical, thermodynamical and mechanical properties, even where experiments are not available. However, for a big impact on the society, this rapidly growing field of computational approaches to materials science has to face the unfavourable scaling with the system size, and to beat the time-scale bottleneck. Indeed, many phenomena, such as crystal growth or protein folding for example, occur in a space/time scale which is normally out of reach of present simulations. Multi-scale approaches try to combine different scale algorithms along with matching procedures in order to bridge the gap between first-principles and continuum-level simulations. This Research Topic aims at the description of recent advances and applications in these two emerging fields of ab-inito and multi-scale materials modelling for both ground and excited states. A variety of theoretical and computational techniques are included along with the application of these methods to systems at increasing level of complexity, from nano to micro. Crossing the borders between several computational, theoretical and experimental techniques, this Research Topic aims to be of interest to a broad community, including experimental and theoretical physicists, chemists and engineers interested in materials research in a broad sense.

Frontiers in Materials Science

Frontiers in Materials Science PDF Author: B. Raj
Publisher: Universities Press
ISBN: 9788173715075
Category : Technology & Engineering
Languages : en
Pages : 882

Book Description
This volume presents contributions by a galaxy of eminent scientists and technologists from the world over in broad spectrum of areas in materials science, providing a global perspective on complex issues of current concern and the direction of research in these areas.

Electronic Structure of Alloys, Surfaces and Clusters

Electronic Structure of Alloys, Surfaces and Clusters PDF Author: Abhijit Mookerjee
Publisher: CRC Press
ISBN: 1482288125
Category : Technology & Engineering
Languages : en
Pages : 385

Book Description
Understanding the electronic structure of solids is a basic part of theoretical investigation in physics. Application of investigative techniques requires the solid under investigation to be "periodic." However, this is not always the case. This volume addresses three classes of "non-periodic" solids currently undergoing the most study: alloys, sur

Nanometal Oxides in Horticulture and Agronomy

Nanometal Oxides in Horticulture and Agronomy PDF Author: Li Xinghui
Publisher: Elsevier
ISBN: 0323972292
Category : Science
Languages : en
Pages : 411

Book Description
Nanometal Oxides in Horticulture and Agronomy, a volume in the Nanomaterial-Plant Interactions series, summarizes the physiological, morphological, biochemical, and molecular regulation of metal oxide nanoparticles in plants under normal conditions as well as during different stresses. With a focus on impact and applications, it presents the latest advances in the roles of metal oxide nanoparticles in both horticulture and agriculture. Metal oxide nanoparticles have been reported as beneficial inorganic materials for the growth and development of plants, playing a protective role against the abiotic and biotic stresses. Researchers need to understand the different regulatory pathways of metal oxide nanoparticles, including their mechanisms of operation under different stressful conditions. This volume presents the physiological, morphological, biochemical, and molecular regulation of metal oxide nanoparticles in plants in normal conditions as well as during different stresses. It also discusses tolerance mechanisms and the variety of roles and applications that metal oxide nanoparticles have within plant biology. Beginning with an introductory overview to metal oxide nanomaterials, chapters discuss the effect of metal oxide nanomaterials on biochemical pathways within the plant, highlighting key applications such as fertilizers, weed control systems and pest control systems. It describes the impact of metal oxide nanoparticles in different challenging environmental conditions. Concluding with a discussion of the strengths and weaknesses of metal oxide nanoparticles in agriculture, Nanometal Oxides in Horticulture and Agronomy provides inspiration for further research and advancement. This book is an essential read for researchers and students interested in horticulture, agronomy, and plant nanomaterials. - Bridges the interdisciplinary knowledge gap between metal oxide nanoparticle synthesis and biological relevance in agriculture and horticulture - Evaluates why metal oxide nanoparticles are superior to other nanomaterials for horticultural and agricultural applications - Interprets the impact of metal oxide nanoparticles against a variety of different stressors, including drought, salinity and heavy metal contamination

Trends in Atomic and Molecular Physics

Trends in Atomic and Molecular Physics PDF Author: Krishan K. Sud
Publisher: Springer Science & Business Media
ISBN: 1461542596
Category : Science
Languages : en
Pages : 426

Book Description
Contemporary research in atomic and molecular physics concerns itself with studies of interactions of electron, positron, photons, and ions with atoms, molecules, and clusters; interactions of intense ultrashort laser interaction with atoms, molecules, and solids; laser assisted atomic collisions, optical, and magnetic traps of neutral atoms to produce ultracold and dense samples; high resolution atomic spectroscopy and experiments by using synchrotron radiation sources and ion storage rings. In recent years, important advances have been made in the experimental as well as theoretical understanding of atomic and molecular physics. The advances in atomic and molecu lar physics have helped us to understand many other fields, like astrophyics, atmo spheric physics, environmental science, laser physics, surface physics, computational physics, photonics, and electronics. XII National Conference on Atomic and Molecular Physics was held at the Physics Department, M. 1. S. University, Udaipur from 29th Dec. 1998 to 2ndJan. 1999 under the auspices of the Indian Society of Atomic and Molecular Physics. This volume is an outcome of the contributions from the invited speakers at the conference. The volume contains 24 articles contributed by the distinguished scientists in the field. The contrib utors have covered a wide range of topics in the field in which current research is being done. This also reflects the trend of research in this field in Indian universities and research institutes. We are grateful to the national programme committee, national, and local organiz ing committees, and members of the Physics Department and Computer Centre, M. 1.

Annual Reports on NMR Spectroscopy

Annual Reports on NMR Spectroscopy PDF Author: Graham A. Webb
Publisher: Academic Press
ISBN: 0128003278
Category : Science
Languages : en
Pages : 371

Book Description
Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained such significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required and in which the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a premier means for the specialist and non-specialist alike to become familiar with new techniques and applications of NMR spectroscopy. - This volume of Annual Reports on NMR Spectroscopy focuses on the analytical tools used by chemists and physicists, taken together with other volumes of this series, an excellent account of progress in NMR and its many applications is provided and anyone using NMR will find interest in this Serial

Solid State Physics

Solid State Physics PDF Author: R. Mukhopadhyay
Publisher: Universities Press
ISBN: 9788173711985
Category :
Languages : en
Pages : 562

Book Description


Applied Computational Materials Modeling

Applied Computational Materials Modeling PDF Author: Guillermo Bozzolo
Publisher: Springer Science & Business Media
ISBN: 0387345655
Category : Technology & Engineering
Languages : en
Pages : 502

Book Description
The scope of this book is to identify and emphasize the successful link between computational materials modeling as a simulation and design tool and its synergistic application to experimental research and alloy development. The book provides a more balanced perspective of the role that computational modeling can play in every day research and development efforts. Each chapter describes one or more particular computational tool and how they are best used.

Computational Modelling of Nanomaterials

Computational Modelling of Nanomaterials PDF Author: Panagiotis Grammatikopoulos
Publisher: Elsevier
ISBN: 0128214988
Category : Technology & Engineering
Languages : en
Pages : 246

Book Description
Due to their small size and their dependence on very fast phenomena, nanomaterials are ideal systems for computational modelling. This book provides an overview of various nanosystems classified by their dimensions: 0D (nanoparticles, QDs, etc.), 1D (nanowires, nanotubes), 2D (thin films, graphene, etc.), 3D (nanostructured bulk materials, devices). Fractal dimensions, such as nanoparticle agglomerates, percolating films and combinations of materials of different dimensionalities are also covered (e.g. epitaxial decoration of nanowires by nanoparticles, i.e. 0D+1D nanomaterials). For each class, the focus will be on growth, structure, and physical/chemical properties. The book presents a broad range of techniques, including density functional theory, molecular dynamics, non-equilibrium molecular dynamics, finite element modelling (FEM), numerical modelling and meso-scale modelling. The focus is on each method's relevance and suitability for the study of materials and phenomena in the nanoscale. This book is an important resource for understanding the mechanisms behind basic properties of nanomaterials, and the major techniques for computational modelling of nanomaterials. - Explores the major modelling techniques used for different classes of nanomaterial - Assesses the best modelling technique to use for each different type of nanomaterials - Discusses the challenges of using certain modelling techniques with specific nanomaterials