Forces in Biology - Cell and Developmental Mechanobiology and Its Implications in Disease PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Forces in Biology - Cell and Developmental Mechanobiology and Its Implications in Disease PDF full book. Access full book title Forces in Biology - Cell and Developmental Mechanobiology and Its Implications in Disease by Selwin K. Wu. Download full books in PDF and EPUB format.

Forces in Biology - Cell and Developmental Mechanobiology and Its Implications in Disease

Forces in Biology - Cell and Developmental Mechanobiology and Its Implications in Disease PDF Author: Selwin K. Wu
Publisher: Frontiers Media SA
ISBN: 2889662179
Category : Science
Languages : en
Pages : 171

Book Description


Forces in Biology - Cell and Developmental Mechanobiology and Its Implications in Disease

Forces in Biology - Cell and Developmental Mechanobiology and Its Implications in Disease PDF Author: Selwin K. Wu
Publisher: Frontiers Media SA
ISBN: 2889662179
Category : Science
Languages : en
Pages : 171

Book Description


Scientific Frontiers in Developmental Toxicology and Risk Assessment

Scientific Frontiers in Developmental Toxicology and Risk Assessment PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309070864
Category : Nature
Languages : en
Pages : 348

Book Description
Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.

Cell Adhesion and Migration in the Development of Multicellular Organisms

Cell Adhesion and Migration in the Development of Multicellular Organisms PDF Author: Takaaki Matsui
Publisher: Frontiers Media SA
ISBN: 2889456943
Category :
Languages : en
Pages : 122

Book Description
During development, cells are generated at specific locations within the embryo and then migrate into their destinations. At their destinations, they assemble together through cell adhesions, eventually leading to the formation of tissues and organs. In some cases, orchestration of cell adhesion and migration produces the global movement of cell groups, called collective cell migration, which is also required for the development of basic tissue structures such as spheres, clusters, and vesicles in the morphogenetic processes of development. Therefore, individual regulation and orchestration of cell adhesion and migration are quite important for appropriate tissue/organ formation during development. However, how cell adhesion and migration are regulated, and orchestrated during development? How cell adhesion and migration affects tissue formation during development? To answer these questions, we assembled several review and research articles in this eBook. By assembling these articles, we could explore the presence of core regulatory mechanisms and deepen the current understanding of cell adhesion and migration during the development of multicellular organisms.

Embryogenesis Explained

Embryogenesis Explained PDF Author: Natalie K Gordon
Publisher: World Scientific
ISBN: 9814740691
Category : Science
Languages : en
Pages : 784

Book Description
The greatest mystery of life is how a single fertilized egg develops into a fully functioning, sometimes conscious multicellular organism. Embryogenesis Explained offers a new theory of how embryos build themselves, and combines simple physics with the most recent biochemical and genetic breakthroughs, based on the authors' prediction and then discovery of differentiation waves. They explain their ideas in a form accessible to the lay person and a broad spectrum of scientists and engineers. The diverse subjects of development, genetics and evolution, and their physics, are brought together to explain this major, previously unanswered scientific question of our time.As a follow up on The Hierarchical Genome, this book is a shorter but conceptually expanded work for the reader who is interested in science. It is useful as a starting point for the curious layman or the scientist or professional encountering the problem of embryogenesis without the formal biology background. There is also material useful for the seasoned biologist caught up in the new rush of information about the role of mechanics in developmental biology and cellular level mechanics in medicine.

Golgi Dynamics in Physiological and Pathological Conditions

Golgi Dynamics in Physiological and Pathological Conditions PDF Author: Jaakko Saraste
Publisher: Frontiers Media SA
ISBN: 2889635392
Category :
Languages : en
Pages : 359

Book Description


Frontiers in Computational and Systems Biology

Frontiers in Computational and Systems Biology PDF Author: Jianfeng Feng
Publisher: Springer Science & Business Media
ISBN: 1849961964
Category : Science
Languages : en
Pages : 411

Book Description
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician’s fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual’s susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain–machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.

Molecular and Cellular Mechanisms in Reproduction and Early Development

Molecular and Cellular Mechanisms in Reproduction and Early Development PDF Author: Rafael A. Fissore
Publisher: Frontiers Media SA
ISBN: 2889459446
Category :
Languages : en
Pages : 145

Book Description
The Research Topic aims to support progress towards understanding the different sets of developmental processes that are absolutely required to complete all the steps essential for successful embryonic development, under physiological conditions. We sought contributions that dealt with single cells, interaction between cells as well as intra- and extracellular signal transduction. The Research Topic presents original studies covering experimental and theoretical approaches, descriptions of new methodologies, reviews and opinions.

Introduction to Single Cell Omics

Introduction to Single Cell Omics PDF Author: Xinghua Pan
Publisher: Frontiers Media SA
ISBN: 2889459209
Category :
Languages : en
Pages : 129

Book Description
Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.

Molecular Mechanisms of Retinal Cell Degeneration and Regeneration

Molecular Mechanisms of Retinal Cell Degeneration and Regeneration PDF Author: Glenn Prazere Lobo
Publisher: Frontiers Media SA
ISBN: 2889667022
Category : Science
Languages : en
Pages : 162

Book Description


Prokaryotic Gene Expression

Prokaryotic Gene Expression PDF Author: Simon Baumberg
Publisher: OUP Oxford
ISBN: 0191565571
Category : Science
Languages : en
Pages : 350

Book Description
Prokaryotic gene expression is not only of theoretical interest but also of highly practical significance. It has implications for other biological problems, such as developmental biology and cancer, brings insights into genetic engineering and expression systems, and has consequences for important aspects of applied research. For example, the molecular basis of bacterial pathogenicity has implications for new antibiotics and in crop development. Prokaryotic Gene Expression is a major review of the subject, providing up-to-date coverage as well as numerous insights by the prestigious authors. Topics covered include operons; protein recognition of sequence specific DNA- and RNA-binding sites; promoters; sigma factors, and variant tRNA polymerases; repressors and activators; post-transcriptional control and attenuation; ribonuclease activity, mRNA stability, and translational repression; prokaryotic DNA topology, topoisomerases, and gene expression; regulatory networks, regulatory cascades and signal transduction; phosphotransfer reactions; switch systems, transcriptional and translational modulation, methylation, and recombination mechanisms; pathogenicity, toxin regulation and virulence determinants; sporulation and genetic regulation of antibiotic production; origins of regulatory molecules, selective pressures and evolution of prokaryotic regulatory mechanisms systems. Over 1100 references to the primary literature are cited. Prokaryotic Gene Expression is a comprehensive and authoritative review of current knowledge and research in the area. It is essential reading for postgraduates and researchers in the field. Advanced undergraduates in biochemistry, molecular biology, and microbiology will also find this book useful.