Author: Martin A. Guest
Publisher: OUP Oxford
ISBN: 0191606960
Category : Mathematics
Languages : en
Pages : 336
Book Description
Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.
From Quantum Cohomology to Integrable Systems
Author: Martin A. Guest
Publisher: OUP Oxford
ISBN: 0191606960
Category : Mathematics
Languages : en
Pages : 336
Book Description
Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.
Publisher: OUP Oxford
ISBN: 0191606960
Category : Mathematics
Languages : en
Pages : 336
Book Description
Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.
Integrability, Quantization, and Geometry: I. Integrable Systems
Author: Sergey Novikov
Publisher: American Mathematical Soc.
ISBN: 1470455919
Category : Education
Languages : en
Pages : 516
Book Description
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
Publisher: American Mathematical Soc.
ISBN: 1470455919
Category : Education
Languages : en
Pages : 516
Book Description
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
Sixteenth International Congress on Mathematical Physics
Author: Pavel Exner
Publisher: World Scientific
ISBN: 981430462X
Category : Science
Languages : en
Pages : 709
Book Description
The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program. This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.
Publisher: World Scientific
ISBN: 981430462X
Category : Science
Languages : en
Pages : 709
Book Description
The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program. This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.
Integrable Systems
Author: N.J. Hitchin
Publisher: Oxford University Press, USA
ISBN: 0199676771
Category : Mathematics
Languages : en
Pages : 148
Book Description
Designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors, this book has its origins in a lecture series given by the internationally renowned authors. Written in an accessible, informal style, it fills a gap in the existing literature.
Publisher: Oxford University Press, USA
ISBN: 0199676771
Category : Mathematics
Languages : en
Pages : 148
Book Description
Designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors, this book has its origins in a lecture series given by the internationally renowned authors. Written in an accessible, informal style, it fills a gap in the existing literature.
Calogero-Moser Systems and Representation Theory
Author: Pavel I. Etingof
Publisher: European Mathematical Society
ISBN: 9783037190340
Category : Mathematics
Languages : en
Pages : 108
Book Description
Calogero-Moser systems, which were originally discovered by specialists in integrable systems, are currently at the crossroads of many areas of mathematics and within the scope of interests of many mathematicians. More specifically, these systems and their generalizations turned out to have intrinsic connections with such fields as algebraic geometry (Hilbert schemes of surfaces), representation theory (double affine Hecke algebras, Lie groups, quantum groups), deformation theory (symplectic reflection algebras), homological algebra (Koszul algebras), Poisson geometry, etc. The goal of the present lecture notes is to give an introduction to the theory of Calogero-Moser systems, highlighting their interplay with these fields. Since these lectures are designed for non-experts, the author gives short introductions to each of the subjects involved and provides a number of exercises.
Publisher: European Mathematical Society
ISBN: 9783037190340
Category : Mathematics
Languages : en
Pages : 108
Book Description
Calogero-Moser systems, which were originally discovered by specialists in integrable systems, are currently at the crossroads of many areas of mathematics and within the scope of interests of many mathematicians. More specifically, these systems and their generalizations turned out to have intrinsic connections with such fields as algebraic geometry (Hilbert schemes of surfaces), representation theory (double affine Hecke algebras, Lie groups, quantum groups), deformation theory (symplectic reflection algebras), homological algebra (Koszul algebras), Poisson geometry, etc. The goal of the present lecture notes is to give an introduction to the theory of Calogero-Moser systems, highlighting their interplay with these fields. Since these lectures are designed for non-experts, the author gives short introductions to each of the subjects involved and provides a number of exercises.
The Moduli Space of Curves
Author: R. Dijkgraaf
Publisher: Springer Science & Business Media
ISBN: 9780817637842
Category : Mathematics
Languages : en
Pages : 584
Book Description
The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory. Leading experts in the field explore in this volume both the structure of the moduli space of curves and its relationship with physics through quantum cohomology. Altogether, this is a lively volume that testifies to the ferment in the field and gives an excellent view of the state of the art for both mathematicians and theoretical physicists. It is a persuasive example of the famous Wignes comment, and its converse, on "the unreasonable effectiveness of mathematics in the natural science." Witteen’s conjecture in 1990 describing the intersection behavior of tautological classes in the cohomology of Mg arose directly from string theory. Shortly thereafter a stunning proof was provided by Kontsevich who, in this volume, describes his solution to the problem of counting rational curves on certain algebraic varieties and includes numerous suggestions for further development. The same problem is given an elegant treatment in a paper by Manin. There follows a number of contributions to the geometry, cohomology, and arithmetic of the moduli spaces of curves. In addition, several contributors address quantum cohomology and conformal field theory.
Publisher: Springer Science & Business Media
ISBN: 9780817637842
Category : Mathematics
Languages : en
Pages : 584
Book Description
The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory. Leading experts in the field explore in this volume both the structure of the moduli space of curves and its relationship with physics through quantum cohomology. Altogether, this is a lively volume that testifies to the ferment in the field and gives an excellent view of the state of the art for both mathematicians and theoretical physicists. It is a persuasive example of the famous Wignes comment, and its converse, on "the unreasonable effectiveness of mathematics in the natural science." Witteen’s conjecture in 1990 describing the intersection behavior of tautological classes in the cohomology of Mg arose directly from string theory. Shortly thereafter a stunning proof was provided by Kontsevich who, in this volume, describes his solution to the problem of counting rational curves on certain algebraic varieties and includes numerous suggestions for further development. The same problem is given an elegant treatment in a paper by Manin. There follows a number of contributions to the geometry, cohomology, and arithmetic of the moduli spaces of curves. In addition, several contributors address quantum cohomology and conformal field theory.
Introduction to Symplectic Topology
Author: Dusa McDuff
Publisher: Oxford University Press
ISBN: 0192514016
Category : Mathematics
Languages : en
Pages : 632
Book Description
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.
Publisher: Oxford University Press
ISBN: 0192514016
Category : Mathematics
Languages : en
Pages : 632
Book Description
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.
Differential Geometry
Author: Clifford Henry Taubes
Publisher: OUP Oxford
ISBN: 0191621226
Category : Mathematics
Languages : en
Pages : 313
Book Description
Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kähler geometry. Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail.
Publisher: OUP Oxford
ISBN: 0191621226
Category : Mathematics
Languages : en
Pages : 313
Book Description
Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kähler geometry. Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail.
An Introduction to Stochastic Filtering Theory
Author: Jie Xiong
Publisher: OUP Oxford
ISBN: 0191551392
Category : Mathematics
Languages : en
Pages : 288
Book Description
Stochastic Filtering Theory uses probability tools to estimate unobservable stochastic processes that arise in many applied fields including communication, target-tracking, and mathematical finance. As a topic, Stochastic Filtering Theory has progressed rapidly in recent years. For example, the (branching) particle system representation of the optimal filter has been extensively studied to seek more effective numerical approximations of the optimal filter; the stability of the filter with "incorrect" initial state, as well as the long-term behavior of the optimal filter, has attracted the attention of many researchers; and although still in its infancy, the study of singular filtering models has yielded exciting results. In this text, Jie Xiong introduces the reader to the basics of Stochastic Filtering Theory before covering these key recent advances. The text is written in a style suitable for graduates in mathematics and engineering with a background in basic probability.
Publisher: OUP Oxford
ISBN: 0191551392
Category : Mathematics
Languages : en
Pages : 288
Book Description
Stochastic Filtering Theory uses probability tools to estimate unobservable stochastic processes that arise in many applied fields including communication, target-tracking, and mathematical finance. As a topic, Stochastic Filtering Theory has progressed rapidly in recent years. For example, the (branching) particle system representation of the optimal filter has been extensively studied to seek more effective numerical approximations of the optimal filter; the stability of the filter with "incorrect" initial state, as well as the long-term behavior of the optimal filter, has attracted the attention of many researchers; and although still in its infancy, the study of singular filtering models has yielded exciting results. In this text, Jie Xiong introduces the reader to the basics of Stochastic Filtering Theory before covering these key recent advances. The text is written in a style suitable for graduates in mathematics and engineering with a background in basic probability.
Algebraic Models in Geometry
Author: Yves Félix
Publisher: Oxford University Press
ISBN: 0199206511
Category : Mathematics
Languages : en
Pages : 483
Book Description
A text aimed at both geometers needing the tools of rational homotopy theory to understand and discover new results concerning various geometric subjects, and topologists who require greater breadth of knowledge about geometric applications of the algebra of homotopy theory.
Publisher: Oxford University Press
ISBN: 0199206511
Category : Mathematics
Languages : en
Pages : 483
Book Description
A text aimed at both geometers needing the tools of rational homotopy theory to understand and discover new results concerning various geometric subjects, and topologists who require greater breadth of knowledge about geometric applications of the algebra of homotopy theory.