From Calculus to Cohomology

From Calculus to Cohomology PDF Author: Ib H. Madsen
Publisher: Cambridge University Press
ISBN: 9780521589567
Category : Mathematics
Languages : en
Pages : 302

Book Description
An introductory textbook on cohomology and curvature with emphasis on applications.

From Calculus to Cohomology

From Calculus to Cohomology PDF Author: Ib Henning Madsen
Publisher:
ISBN: 9787302075639
Category : Characteristic classes
Languages : en
Pages : 286

Book Description


Cohomology and Differential Forms

Cohomology and Differential Forms PDF Author: Izu Vaisman
Publisher: Courier Dover Publications
ISBN: 0486815129
Category : Mathematics
Languages : en
Pages : 304

Book Description
Self-contained development of cohomological theory of manifolds with various sheaves and its application to differential geometry covers categories and functions, sheaves and cohomology, fiber and vector bundles, and cohomology classes and differential forms. 1973 edition.

Global Calculus

Global Calculus PDF Author: S. Ramanan
Publisher: American Mathematical Soc.
ISBN: 0821837028
Category : Analytic spaces
Languages : en
Pages : 330

Book Description
The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.

Vector Analysis

Vector Analysis PDF Author: Klaus Jänich
Publisher: Springer Science & Business Media
ISBN: 1475734786
Category : Mathematics
Languages : en
Pages : 289

Book Description
This book presents modern vector analysis and carefully describes the classical notation and understanding of the theory. It covers all of the classical vector analysis in Euclidean space, as well as on manifolds, and goes on to introduce de Rham Cohomology, Hodge theory, elementary differential geometry, and basic duality. The material is accessible to readers and students with only calculus and linear algebra as prerequisites. A large number of illustrations, exercises, and tests with answers make this book an invaluable self-study source.

Differential Forms in Algebraic Topology

Differential Forms in Algebraic Topology PDF Author: Raoul Bott
Publisher: Springer Science & Business Media
ISBN: 1475739516
Category : Mathematics
Languages : en
Pages : 319

Book Description
Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.

Lecture Notes on Motivic Cohomology

Lecture Notes on Motivic Cohomology PDF Author: Carlo Mazza
Publisher: American Mathematical Soc.
ISBN: 9780821838471
Category : Mathematics
Languages : en
Pages : 240

Book Description
The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).

Geometry of Differential Forms

Geometry of Differential Forms PDF Author: Shigeyuki Morita
Publisher: American Mathematical Soc.
ISBN: 9780821810453
Category : Mathematics
Languages : en
Pages : 356

Book Description
Since the times of Gauss, Riemann, and Poincare, one of the principal goals of the study of manifolds has been to relate local analytic properties of a manifold with its global topological properties. Among the high points on this route are the Gauss-Bonnet formula, the de Rham complex, and the Hodge theorem; these results show, in particular, that the central tool in reaching the main goal of global analysis is the theory of differential forms. The book by Morita is a comprehensive introduction to differential forms. It begins with a quick introduction to the notion of differentiable manifolds and then develops basic properties of differential forms as well as fundamental results concerning them, such as the de Rham and Frobenius theorems. The second half of the book is devoted to more advanced material, including Laplacians and harmonic forms on manifolds, the concepts of vector bundles and fiber bundles, and the theory of characteristic classes. Among the less traditional topics treated is a detailed description of the Chern-Weil theory. The book can serve as a textbook for undergraduate students and for graduate students in geometry.

Hochschild Cohomology for Algebras

Hochschild Cohomology for Algebras PDF Author: Sarah J. Witherspoon
Publisher: American Mathematical Society
ISBN: 1470462869
Category : Mathematics
Languages : en
Pages : 265

Book Description
This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.

Differential Geometry

Differential Geometry PDF Author: Loring W. Tu
Publisher: Springer
ISBN: 3319550845
Category : Mathematics
Languages : en
Pages : 347

Book Description
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.