Frequency Conversion of Single Photons PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Frequency Conversion of Single Photons PDF full book. Access full book title Frequency Conversion of Single Photons by Jason Scott Pelc. Download full books in PDF and EPUB format.

Frequency Conversion of Single Photons

Frequency Conversion of Single Photons PDF Author: Jason Scott Pelc
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The ability to manipulate the carrier frequency of quantum states of light, through a process called quantum frequency conversion (QFC), has numerous applications for both technology and basic science. For example, one can upconvert a single-photon-level signal in the 1.5-micron telecommunications band (where single-photon detection has been challenging) to a visible wavelength to take advantage of well-developed single-photon detectors based on silicon avalanche photodiodes. On the more fundamental side, the manipulation of a single photon's frequency may enable the construction of networks of dissimilar quantum systems, whereby one can imagine generating many-body entangled quantum states over vast distances. Quantum frequency conversion will only be useful if it can be done both efficiently and with little added noise. We demonstrated a conversion efficiency exceeding 99.99% using reverse-proton-exchange waveguides in periodically poled lithium niobate with approximately 150 mW of pump power. Noise has been a more serious issue: the generation of noise photons, due to inelastic scattering of light from the strong pump laser used to drive the frequency conversion, has limited the utility of QFC devices in many applications. We present an analysis of the two primary noise processes in QFC devices (spontaneous Raman scattering and spontaneous parametric fluorescence), and offer solutions on how they may be either mitigated or avoided completely. We then discuss applications of QFC devices for up- and downconversion of single-photon signals. We used a long-wavelength pump to enable high-efficiency and low-noise single-photon detection for 1550-nm telecom band signals, and demonstrated a cascaded frequency conversion approach that enabled low timing jitter as well. We also demonstrated a downconversion quantum interface, in which the emission from a single semiconductor quantum dot at a wavelength of 910 nm was downconverted to 1560 nm while maintaining the single-photon character of the light. The results presented in this dissertation indicate a promising future for QFC devices as the field of quantum communications matures.

Frequency Conversion of Single Photons

Frequency Conversion of Single Photons PDF Author: Jason Scott Pelc
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The ability to manipulate the carrier frequency of quantum states of light, through a process called quantum frequency conversion (QFC), has numerous applications for both technology and basic science. For example, one can upconvert a single-photon-level signal in the 1.5-micron telecommunications band (where single-photon detection has been challenging) to a visible wavelength to take advantage of well-developed single-photon detectors based on silicon avalanche photodiodes. On the more fundamental side, the manipulation of a single photon's frequency may enable the construction of networks of dissimilar quantum systems, whereby one can imagine generating many-body entangled quantum states over vast distances. Quantum frequency conversion will only be useful if it can be done both efficiently and with little added noise. We demonstrated a conversion efficiency exceeding 99.99% using reverse-proton-exchange waveguides in periodically poled lithium niobate with approximately 150 mW of pump power. Noise has been a more serious issue: the generation of noise photons, due to inelastic scattering of light from the strong pump laser used to drive the frequency conversion, has limited the utility of QFC devices in many applications. We present an analysis of the two primary noise processes in QFC devices (spontaneous Raman scattering and spontaneous parametric fluorescence), and offer solutions on how they may be either mitigated or avoided completely. We then discuss applications of QFC devices for up- and downconversion of single-photon signals. We used a long-wavelength pump to enable high-efficiency and low-noise single-photon detection for 1550-nm telecom band signals, and demonstrated a cascaded frequency conversion approach that enabled low timing jitter as well. We also demonstrated a downconversion quantum interface, in which the emission from a single semiconductor quantum dot at a wavelength of 910 nm was downconverted to 1560 nm while maintaining the single-photon character of the light. The results presented in this dissertation indicate a promising future for QFC devices as the field of quantum communications matures.

Quantum Frequency Conversion of Single Photons Emitted by Atomic Quantum Memories to Telecom Wavelengths

Quantum Frequency Conversion of Single Photons Emitted by Atomic Quantum Memories to Telecom Wavelengths PDF Author: Pau Farrera Soler
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In quantum repeater schemes for long distance quantum communication, quantum memories (QMs) play a vital role. For these applications, QMs need to be connected to the fiber optics network. However most QMs operate at wavelengths where the absorption in optical fibers is high. Therefore, their connection to a quantum frequency converter (QFC) to telecom wavelengths is required. In this work we convert an heralded single photon emitted by a rubidium atomic ensemble QM, using a QFC implemented with a non-linear waveguide. The main advantages of this converter setup are its compactness, relative simplicity and wavelength flexibility. We show that after this process the non-classical correlations between the heralding photons and converted heralded photons generated in the QM are preserved. This is the first time that frequency conversion of non-classical light emitted by an atomic QM is performed with a solid state device.

Single-Photon Frequency Conversion for Quantum Interface

Single-Photon Frequency Conversion for Quantum Interface PDF Author: Yuanhua Li
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 0

Book Description
Single-photon frequency conversion for quantum interface plays an important role in quantum communications and networks, which is crucial for the realization of quantum memory, faithful entanglement swapping and quantum teleportation. In this chapter, we will present our recent experiments about single-photon frequency conversion based on quadratic nonlinear processes. Firstly, we demonstrated spectrum compression of broadband single photons at the telecom wavelength to the near-visible window, marking a critical step towards coherent photonic interface. Secondly, we demonstrated the nonlinear interaction between two chirped broadband single-photon-level coherent states, which may be utilized to achieve heralding entanglement at a distance. Finally, we theoretically introduced and experimentally demonstrated single-photon frequency conversion in the telecom band, enabling switching of single photons between dense wavelength-division multiplexing channels. Moreover, quantum entanglement between the photon pair is maintained after the frequency conversion. Our researches have realized three significant quantum interfaces via single-photon frequency conversion, which hold great promise for the development of quantum communications and networks.

Quantum Frequency Down-conversion of Single Photons in Nonlinear Optical Waveguides

Quantum Frequency Down-conversion of Single Photons in Nonlinear Optical Waveguides PDF Author: Sebastian Zaske
Publisher:
ISBN:
Category :
Languages : en
Pages : 173

Book Description


Single-Photon Generation and Detection

Single-Photon Generation and Detection PDF Author: Andreas Christ
Publisher: Elsevier Inc. Chapters
ISBN: 0128058102
Category : Science
Languages : en
Pages : 81

Book Description
In this chapter we review the process of parametric down-conversion (PDC) and discuss the different methods to use PDC as a heralded single-photon source. PDC is a non-linear optical process, where an incoming pump photon decays, under energy and momentum conservation, into a photon-pair. The creation of photons in pairs allows for the implementation of a single-photon source by detecting one photon (trigger) to herald the presence of its partner (signal). The engineering possibilities of PDC enable the generation of single-photons with high rates in a wide range of frequencies. This chapter is structured as follows: Section 11.2 describes the principles of PDC in non-linear media. We derive the quantum state of the generated photon-pairs, investigate the spectral purity and photon-number purity of the heralded signal photon and discuss the achievable single-photon generation rates. In section 11.3 we turn towards experimental realizations and introduce bulk crystal PDC. Section 11.4 elaborates on the use of periodic poling to engineer the PDC process. Finally, section 11.5 gives an overview over PDC in waveguides. A comparison of experimental data from various heralded singe-photon sources based on PDC is presented in section 11.6 with an overview of nonlinear materials suited for PDC given in section 11.7.

Single Photon Manipulation

Single Photon Manipulation PDF Author: Keyu Xia
Publisher: BoD – Books on Demand
ISBN: 183880353X
Category : Technology & Engineering
Languages : en
Pages : 112

Book Description
This short book aims to present basic information about single photons in a quick read but with not many details. For this purpose, it only introduces the basic concept of single photons, the most important method of generating single photons in experiments, and a specific emerging field.

Quantum Frecuency Conversion for Hybrid Quantum Networks

Quantum Frecuency Conversion for Hybrid Quantum Networks PDF Author: Nicolas Maring
Publisher:
ISBN:
Category :
Languages : en
Pages : 144

Book Description
The ability to control the optical frequency of quantum state carriers (i.e. photons) is an important functionality for future quantum networks. It allows all matter quantum systems - nodes of the network - to be compatible with the telecommunication C-band, therefore enabling long distance fiber quantum communication between them. It also allows dissimilar nodes to be connected with each other, thus resulting in heterogeneous networks that can take advantage of the different capabilities offered by the diversity of its constituents. Quantum memories are one of the building blocks of a quantum network, enabling the storage of quantum states of light and the entanglement distribution over long distances. In our group, two different types of memories are investigated: a cold atomic ensemble and an ion-doped crystal. In this thesis I investigate the quantum frequency conversion of narrow-band photons, emitted or absorbed by optical quantum memories, with two different objectives: the first one is to connect quantum memories emitting or absorbing visible single photons with the telecommunication wavelengths, where fiber transmission loss is minimum. The second and main goal is to study the compatibility between disparate quantum nodes, emitting or absorbing photons at different wavelengths. More precisely the objective is to achieve a quantum connection between the two optical memories studied using quantum frequency conversion techniques. The main core of this work is the quantum frequency conversion interface that bridges the gap between the cold ensemble of Rubidium atoms, emitting photons at 780nm, and the Praseodymium ion doped crystal, absorbing photons at 606nm. This interface is composed of two different frequency conversion devices, where a cascaded conversions takes place: the first one converts 780nm photons to the telecommunication C-band, and the second one converts them back to visible, at 606nm. This comes with several challenges such as conversion efficiency, phase stability and parasitic noise reduction, which are important considerations to show the conservation of quantum behaviors through the conversion process. This work can be divided in three parts. In a first one, we built a quantum frequency conversion interface between 606nm and the C-band wavelength, capable of both up and down-conversion of single photon level light. We also characterized the noise processes involved in this specific conversion. In the down-conversion case we showed that memory compatible heralded single photons emitted from a photon pair source preserve their non-classical properties through the conversion process. In the up-conversion case, we showed the storage of converted telecom photons in the praseodymium doped crystal, and their retrieval with high signal to noise ratio. The second part of the work was devoted to the conversion of photons from an emissive Rubidium atomic quantum memory to the telecom C band. In this work we converted the heralding photons from the atomic ensemble and measured non-classical correlations between a stored excitation and a C-band photon, necessary for quantum repeater applications. In the last part of the thesis, we setup the full frequency conversion interface and showed that heralded photons emitted by the atomic ensemble are converted, stored in the solid state memory and retrieved with high signal to noise ratio. We demonstrated that a single collective excitation stored in the atomic ensemble is transfered to the crystal by mean of a single photon at telecom wavelength. We also showed time-bin qubit transfer between the two quantum memories. This work represents the first proof of principle of a photonic quantum connection between disparate quantum memory nodes. The results presented in this thesis pave the way towards the realization of modular and hybrid quantum networks.

Single-Photon Generation and Detection

Single-Photon Generation and Detection PDF Author:
Publisher: Academic Press
ISBN: 0123876966
Category : Science
Languages : en
Pages : 593

Book Description
Single-photon generation and detection is at the forefront of modern optical physics research. This book is intended to provide a comprehensive overview of the current status of single-photon techniques and research methods in the spectral region from the visible to the infrared. The use of single photons, produced on demand with well-defined quantum properties, offers an unprecedented set of capabilities that are central to the new area of quantum information and are of revolutionary importance in areas that range from the traditional, such as high sensitivity detection for astronomy, remote sensing, and medical diagnostics, to the exotic, such as secretive surveillance and very long communication links for data transmission on interplanetary missions. The goal of this volume is to provide researchers with a comprehensive overview of the technology and techniques that are available to enable them to better design an experimental plan for its intended purpose. The book will be broken into chapters focused specifically on the development and capabilities of the available detectors and sources to allow a comparative understanding to be developed by the reader along with and idea of how the field is progressing and what can be expected in the near future. Along with this technology, we will include chapters devoted to the applications of this technology, which is in fact much of the driver for its development. This is set to become the go-to reference for this field. - Covers all the basic aspects needed to perform single-photon experiments and serves as the first reference to any newcomer who would like to produce an experimental design that incorporates the latest techniques - Provides a comprehensive overview of the current status of single-photon techniques and research methods in the spectral region from the visible to the infrared, thus giving broad background that should enable newcomers to the field to make rapid progress in gaining proficiency - Written by leading experts in the field, among which, the leading Editor is recognized as having laid down the roadmap, thus providing the reader with an authenticated and reliable source

Single-photon Frequency Upconversion for Long-distance Quantum Teleportation and Communication

Single-photon Frequency Upconversion for Long-distance Quantum Teleportation and Communication PDF Author: Marius A. Albotǎ
Publisher:
ISBN:
Category :
Languages : en
Pages : 139

Book Description
Entanglement generation, single-photon detection, and frequency translation that preserves the polarization quantum state of the photons are essential technologies for long distance quantum communication protocols. This thesis investigates the application of polarization entanglement to quantum communication, including frequency upconversion, photon-counting detection, and photon-pair and entanglement generation. We demonstrate a near-unity efficient frequency conversion scheme that allows fast and efficient photon counting at wavelengths in the low-loss fiber optic and atmospheric transmission band near 1.55 /im. This upconverter, which is polarization-selective, is useful for classical as well as quantum optical communication. We investigate several schemes that allow frequency translation of polarization-entangled photons generated via spontaneous parametric downconversion in second order non-linear crystals. We demonstrate upconversion from 1.56 to 0.633 m that preserves the polarization state of an arbitrarily polarized input. The polarization-insensitive upconverter uses bidirectional sum-frequency generation in bulk periodically poled lithium niobate and a Michelson interferometer to stabilize the phase. Using this bidirectional upconversion technique, entangled photons produced in a periodically poled parametric downconverter can be translated to a different wavelength with preservation of their polarization state. We discuss the implications of these results for quantum information processing.

Nonlinear Frequency Conversion in III-V Semiconductor Photonic Crystals

Nonlinear Frequency Conversion in III-V Semiconductor Photonic Crystals PDF Author: Kelley Elise Rivoire
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Nonlinear optical processes provide a physical mechanism for converting the frequency of light. This allows the generation of tunable light sources at wavelengths inaccessible with lasers, leading to a diverse set of applications in fields such as spectroscopy, sensing, and metrology. To make these processes efficient has conventionally required relatively exotic materials that are incompatible with state of the art nanofabrication, resulting in large-area devices that operate at high optical powers and cannot be integrated with on-chip optical and electronic circuits. This dissertation shows how optical nanocavities, by localizing light into sub-cubic optical wavelength volumes with long photon storage times, can greatly enhance the efficiency of nonlinear frequency conversion processes in III-V semiconductors, while simultaneously shrinking the device footprint, reducing the operating power, and providing a scalable on-chip platform. This approach also enables on-chip quantum frequency conversion interfaces, which are crucial for the construction of quantum networks. First, photonic crystal nanocavities in gallium phosphide are shown to generate second harmonic radiation with only nanowatts of coupled optical powers, and efficiency many orders of magnitude greater than in previous nanoscale devices. This approach is then extended to demonstrate sum-frequency generation in GaP photonic crystal cavities with multiple cavity modes, as well as broadband upconversion employing photonic crystal waveguides. The nanocavity-enhanced second harmonic generation is then integrated with a single quantum dot to create a single photon source triggered at 300 MHz by a telecommunication wavelength laser coupled with an external electro-optic modulator, a simpler and faster configuration than standard approaches. The efficiency of all the aforementioned processes can be further improved through resonant photonic crystal nanocavities allowing large frequency separation, which are described in this thesis. Finally, this dissertation presents spectroscopic measurements of quantum systems that emit photons at visible wavelengths, which are promising candidates for a number of quantum and classical applications and well-suited for integration with on-chip frequency conversion.