Free Boundary Problems for Nonstationary Navier-Stokes Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Free Boundary Problems for Nonstationary Navier-Stokes Equations PDF full book. Access full book title Free Boundary Problems for Nonstationary Navier-Stokes Equations by Ewa Zadrzyńska. Download full books in PDF and EPUB format.

Free Boundary Problems for Nonstationary Navier-Stokes Equations

Free Boundary Problems for Nonstationary Navier-Stokes Equations PDF Author: Ewa Zadrzyńska
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 142

Book Description


Free Boundary Problems for Nonstationary Navier-Stokes Equations

Free Boundary Problems for Nonstationary Navier-Stokes Equations PDF Author: Ewa Zadrzyńska
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 142

Book Description


Numerical Methods for Free Boundary Problems

Numerical Methods for Free Boundary Problems PDF Author: VEITTAANMÄKI
Publisher: Birkhäuser
ISBN: 3034857152
Category : Science
Languages : en
Pages : 431

Book Description
About 80 participants from 16 countries attended the Conference on Numerical Methods for Free Boundary Problems, held at the University of Jyviiskylii, Finland, July 23-27, 1990. The main purpose of this conference was to provide up-to-date information on important directions of research in the field of free boundary problems and their numerical solutions. The contributions contained in this volume cover the lectures given in the conference. The invited lectures were given by H.W. Alt, V. Barbu, K-H. Hoffmann, H. Mittelmann and V. Rivkind. In his lecture H.W. Alt considered a mathematical model and existence theory for non-isothermal phase separations in binary systems. The lecture of V. Barbu was on the approximate solvability of the inverse one phase Stefan problem. K-H. Hoff mann gave an up-to-date survey of several directions in free boundary problems and listed several applications, but the material of his lecture is not included in this proceedings. H.D. Mittelmann handled the stability of thermo capillary convection in float-zone crystal growth. V. Rivkind considered numerical methods for solving coupled Navier-Stokes and Stefan equations. Besides of those invited lectures mentioned above there were 37 contributed papers presented. We shall briefly outline the topics of the contributed papers: Stefan like problems. Modelling, existence and uniqueness.

Free Boundary Problems in Continuum Mechanics

Free Boundary Problems in Continuum Mechanics PDF Author: S.N. Antontsev
Publisher: Birkhäuser
ISBN: 3034886276
Category : Science
Languages : en
Pages : 348

Book Description
Progress in different fields of mechanics, such as filtra tion theory, elastic-plastic problems, crystallization pro cesses, internal and surface waves, etc., is governed to a great extent by the advances in the study of free boundary problems for nonlinear partial differential equations. Free boundary problems form a scientific area which attracts attention of many specialists in mathematics and mechanics. Increasing interest in the field has given rise to the "International Conferences on Free Boundary Problems and Their Applications" which have convened, since the 1980s, in such countries as England, the United states, Italy, France and Germany. This book comprises the papers presented at the Interna tional Conference "Free Boundary Problems in Continuum Mechanics", organized by the Lavrentyev Institute of Hydrodynamics, Russian Academy of Sciences, July 15-19, 1991, Novosibirsk, Russia. The scientific committee consisted of: Co-chairmen: K.-H. Hoffmann, L.V. Ovsiannikov S. Antontsev (Russia) J. Ockendon (UK) M. Fremond (France) L. Ovsiannikov (Russia) A. Friedman (USA) S. Pokhozhaev (Russia) K.-H. Hoffmann (Germany) M. Primicerio (Italy) A. Khludnev (Russia) V. Pukhnachov (Russia) V. Monakhov (Russia) Yu. Shokin (Russia) V. Teshukov (Russia) Our thanks are due to the members of the Scientific Com mittee, all authors, and participants for contributing to the success of the Conference. We would like to express special appreciation to N. Makarenko, J. Mal'tseva and T. Savelieva, Lavrentyev Institute of Hydrodynamics, for their help in preparing this book for publication

Fundamental Directions in Mathematical Fluid Mechanics

Fundamental Directions in Mathematical Fluid Mechanics PDF Author: Giovanni P. Galdi
Publisher: Birkhäuser
ISBN: 3034884249
Category : Mathematics
Languages : en
Pages : 300

Book Description
This volume consists of six articles, each treating an important topic in the theory ofthe Navier-Stokes equations, at the research level. Some of the articles are mainly expository, putting together, in a unified setting, the results of recent research papers and conference lectures. Several other articles are devoted mainly to new results, but present them within a wider context and with a fuller exposition than is usual for journals. The plan to publish these articles as a book began with the lecture notes for the short courses of G.P. Galdi and R. Rannacher, given at the beginning of the International Workshop on Theoretical and Numerical Fluid Dynamics, held in Vancouver, Canada, July 27 to August 2, 1996. A renewed energy for this project came with the founding of the Journal of Mathematical Fluid Mechanics, by G.P. Galdi, J. Heywood, and R. Rannacher, in 1998. At that time it was decided that this volume should be published in association with the journal, and expanded to include articles by J. Heywood and W. Nagata, J. Heywood and M. Padula, and P. Gervasio, A. Quarteroni and F. Saleri. The original lecture notes were also revised and updated.

Mathematical Problems Relating To The Navier-stokes Equations

Mathematical Problems Relating To The Navier-stokes Equations PDF Author: Giovanni Paolo Galdi
Publisher: World Scientific
ISBN: 9814579823
Category :
Languages : en
Pages : 193

Book Description
Contents: A New Approach to the Helmholtz Decomposition and the Neumann Problem in Lq-Spaces for Bounded and Exterior Domains (C G Simader & H Sohr)On the Energy Equation and on the Uniqueness for D-Solutions to Steady Navier-Stokes Equations in Exterior Domains (G P Galdi)On the Asymptotic Structure of D-Solutions to Steady Navier-Stokes Equations in Exterior Domains (G P Galdi)On the Solvability of an Evolution Free Boundary Problem for the Navier-Stokes Equation in Hölder Spaces of Functions (I S Mogilevskii & V A Solonnikov) Readership: Applied mathematicians.

Free Boundary Problems in Fluid Flow with Applications

Free Boundary Problems in Fluid Flow with Applications PDF Author: J M Chadam
Publisher: CRC Press
ISBN: 9780582215672
Category : Mathematics
Languages : en
Pages : 278

Book Description
This is the third of three volumes containing the proceedings of the International Colloquium 'Free Boundary problems: Theory and Applications', held in Montreal from June 13 to June 22, 1990. The main part of this volume studies the flow of fluids, an area which has led to many of the classical free boundary problems. The first two sections contain the papers on various problems in fluid mechanics. The types of problems vary fromthe collision of two jets to the growth of a sand wave. In the next two sections porous flow is considered. This has important practical applications in fields such as petroleum engineering and groundwater pollution. Some new and interesting free boundary problems in geology and engineering are treated in the final section.

The Navier-Stokes Equations

The Navier-Stokes Equations PDF Author: Hermann Sohr
Publisher: Springer Science & Business Media
ISBN: 3034805519
Category : Mathematics
Languages : en
Pages : 376

Book Description
The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.

Approximation Methods for Navier-Stokes Problems

Approximation Methods for Navier-Stokes Problems PDF Author: R. Rautmann
Publisher: Springer
ISBN: 3540385509
Category : Mathematics
Languages : en
Pages : 602

Book Description


Mathematical Analysis of the Navier-Stokes Equations

Mathematical Analysis of the Navier-Stokes Equations PDF Author: Matthias Hieber
Publisher: Springer Nature
ISBN: 3030362264
Category : Mathematics
Languages : en
Pages : 471

Book Description
This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H∞-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension. Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations.

A Variational Inequality Approach to free Boundary Problems with Applications in Mould Filling

A Variational Inequality Approach to free Boundary Problems with Applications in Mould Filling PDF Author: Jörg Steinbach
Publisher: Birkhäuser
ISBN: 3034875975
Category : Mathematics
Languages : en
Pages : 297

Book Description
This monograph studies an evolutionary variational inequality approach to a degenerate moving free boundary problem. It takes an intermediate position between elliptic and parabolic inequalities and comprises an elliptic differential operator, a memory term and time-dependent convex constraint sets. Finally, a description of injection and compression moulding is presented in terms of different mathematical models, a generalized Hele-Shaw flow, a distance concept and Navier-Stokes flow.