Fractional Kinetics In Space: Anomalous Transport Models PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fractional Kinetics In Space: Anomalous Transport Models PDF full book. Access full book title Fractional Kinetics In Space: Anomalous Transport Models by Vladimir V Uchaikin. Download full books in PDF and EPUB format.

Fractional Kinetics In Space: Anomalous Transport Models

Fractional Kinetics In Space: Anomalous Transport Models PDF Author: Vladimir V Uchaikin
Publisher: World Scientific
ISBN: 9813225440
Category : Science
Languages : en
Pages : 300

Book Description
This book is first of its kind describing a new direction in modeling processes taking place in interplanetary and interstellar space (magnetic fields, plasma, cosmic rays, etc.). This method is based on a special mathematical analysis — fractional calculus. The reader will find in this book clear physical explanation of the fractional approach and will become familiar with basic rules in this calculus and main results obtained in frame of this approach. In spite of its profound subject, the book is not overloaded by mathematical details. It contains many illustrations, rich citation and remains accessible to a wide circle of physicists.This book is addressed to graduate and postgraduate students, young and mature researchers specializing in applications of fractional calculus, astrophysics, solar-terrestrial science and physics of cosmic rays.

Fractional Kinetics In Space: Anomalous Transport Models

Fractional Kinetics In Space: Anomalous Transport Models PDF Author: Vladimir V Uchaikin
Publisher: World Scientific
ISBN: 9813225440
Category : Science
Languages : en
Pages : 300

Book Description
This book is first of its kind describing a new direction in modeling processes taking place in interplanetary and interstellar space (magnetic fields, plasma, cosmic rays, etc.). This method is based on a special mathematical analysis — fractional calculus. The reader will find in this book clear physical explanation of the fractional approach and will become familiar with basic rules in this calculus and main results obtained in frame of this approach. In spite of its profound subject, the book is not overloaded by mathematical details. It contains many illustrations, rich citation and remains accessible to a wide circle of physicists.This book is addressed to graduate and postgraduate students, young and mature researchers specializing in applications of fractional calculus, astrophysics, solar-terrestrial science and physics of cosmic rays.

Fractional Kinetics in Space

Fractional Kinetics in Space PDF Author: V. V. Uchaikin
Publisher: World Scientific Publishing Company
ISBN: 9789813225428
Category : Science
Languages : en
Pages : 300

Book Description
This book is first of its kind describing a new direction in modeling processes taking place in interplanetary and interstellar space (magnetic fields, plasma, cosmic rays, etc.). This method is based on a special mathematical analysis fractional calculus. The reader will find in this book clear physical explanation of the fractional approach and will become familiar with basic rules in this calculus and main results obtained in frame of this approach. In spite of its profound subject, the book is not overloaded by mathematical details. It contains many illustrations, rich citation and remains accessible to a wide circle of physicists. This book is addressed to graduate and postgraduate students, young and mature researchers specializing in applications of fractional calculus, astrophysics, solar-terrestrial science and physics of cosmic rays.

Fractional Kinetics in Space

Fractional Kinetics in Space PDF Author: Vladimir Vasilʹevich Uchaĭkin
Publisher:
ISBN: 9789813225435
Category : SCIENCE
Languages : en
Pages : 300

Book Description


Fractional-in-Time Semilinear Parabolic Equations and Applications

Fractional-in-Time Semilinear Parabolic Equations and Applications PDF Author: Ciprian G. Gal
Publisher: Springer Nature
ISBN: 3030450430
Category : Mathematics
Languages : en
Pages : 193

Book Description
This book provides a unified analysis and scheme for the existence and uniqueness of strong and mild solutions to certain fractional kinetic equations. This class of equations is characterized by the presence of a nonlinear time-dependent source, generally of arbitrary growth in the unknown function, a time derivative in the sense of Caputo and the presence of a large class of diffusion operators. The global regularity problem is then treated separately and the analysis is extended to some systems of fractional kinetic equations, including prey-predator models of Volterra–Lotka type and chemical reactions models, all of them possibly containing some fractional kinetics. Besides classical examples involving the Laplace operator, subject to standard (namely, Dirichlet, Neumann, Robin, dynamic/Wentzell and Steklov) boundary conditions, the framework also includes non-standard diffusion operators of "fractional" type, subject to appropriate boundary conditions. This book is aimed at graduate students and researchers in mathematics, physics, mathematical engineering and mathematical biology, whose research involves partial differential equations.

Fractional Kinetics in Solids

Fractional Kinetics in Solids PDF Author: Vladimir Uchaikin
Publisher: World Scientific
ISBN: 9814355437
Category : Mathematics
Languages : en
Pages : 274

Book Description
In this book, a novel approach using equations with derivatives of fractional orders is applied to describe anomalous transport and relaxation in disordered semiconductors, dielectrics and quantum dot systems. A relationship between the self-similarity of transport, the Levy stable limiting distributions and the kinetic equations with fractional derivatives is established. It is shown that unlike the well-known Scher-Montroll and Arkhipov-Rudenko models, which are in a sense alternatives to the normal transport model, fractional differential equations provide a unified mathematical framework for describing normal and dispersive transport. The fractional differential formalism allows the equations of bipolar transport to be written down and transport in distributed dispersion systems to be described.

Fractional Kinetics in Solids

Fractional Kinetics in Solids PDF Author: Vladimir Vasilʹevich Uchaĭkin
Publisher: World Scientific
ISBN: 9814355429
Category : Mathematics
Languages : en
Pages : 274

Book Description
The standard (Markovian) transport model based on the Boltzmann equation cannot describe some non-equilibrium processes called anomalous that take place in many disordered solids. Causes of anomality lie in non-uniformly scaled (fractal) spatial heterogeneities, in which particle trajectories take cluster form. Furthermore, particles can be located in some domains of small sizes (traps) for a long time. Estimations show that path length and waiting time distributions are often characterized by heavy tails of the power law type. This behavior allows the introduction of time and space derivatives of fractional orders. Distinction of path length distribution from exponential is interpreted as a consequence of media fractality, and analogous property of waiting time distribution as a presence of memory. In this book, a novel approach using equations with derivatives of fractional orders is applied to describe anomalous transport and relaxation in disordered semiconductors, dielectrics and quantum dot systems. A relationship between the self-similarity of transport, the Levy stable limiting distributions and the kinetic equations with fractional derivatives is established. It is shown that unlike the well-known Scher Montroll and Arkhipov Rudenko models, which are in a sense alternatives to the normal transport model, fractional differential equations provide a unified mathematical framework for describing normal and dispersive transport. The fractional differential formalism allows the equations of bipolar transport to be written down and transport in distributed dispersion systems to be described. The relationship between fractional transport equations and the generalized limit theorem reveals the probabilistic aspects of the phenomenon in which a dispersive to Gaussian transport transition occurs in a time-of-flight experiment as the applied voltage is decreased and/or the sample thickness increased. Recent experiments devoted to studies of transport in quantum dot arrays are discussed in the framework of dispersive transport models. The memory phenomena in systems under consideration are discussed in the analysis of fractional equations. It is shown that the approach based on the anomalous transport models and the fractional kinetic equations may be very useful in some problems that involve nano-sized systems. These are photon counting statistics of blinking single quantum dot fluorescence, relaxation of current in colloidal quantum dot arrays, and some others.

Fractional Dynamics

Fractional Dynamics PDF Author: Vasily E. Tarasov
Publisher: Springer Science & Business Media
ISBN: 3642140033
Category : Science
Languages : en
Pages : 504

Book Description
"Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and an Associate Professor at Applied Mathematics and Physics Department of Moscow Aviation Institute.

Applications Of Fractional Calculus In Physics

Applications Of Fractional Calculus In Physics PDF Author: Rudolf Hilfer
Publisher: World Scientific
ISBN: 9814496200
Category : Science
Languages : en
Pages : 473

Book Description
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.

Theory and Applications of Fractional Differential Equations

Theory and Applications of Fractional Differential Equations PDF Author: A.A. Kilbas
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550

Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.

Nature’s Patterns and the Fractional Calculus

Nature’s Patterns and the Fractional Calculus PDF Author: Bruce J. West
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110534274
Category : Mathematics
Languages : en
Pages : 244

Book Description
Complexity increases with increasing system size in everything from organisms to organizations. The nonlinear dependence of a system’s functionality on its size, by means of an allometry relation, is argued to be a consequence of their joint dependency on complexity (information). In turn, complexity is proven to be the source of allometry and to provide a new kind of force entailed by a system‘s information gradient. Based on first principles, the scaling behavior of the probability density function is determined by the exact solution to a set of fractional differential equations. The resulting lowest order moments in system size and functionality gives rise to the empirical allometry relations. Taking examples from various topics in nature, the book is of interest to researchers in applied mathematics, as well as, investigators in the natural, social, physical and life sciences. Contents Complexity Empirical allometry Statistics, scaling and simulation Allometry theories Strange kinetics Fractional probability calculus