Author: J. Sabatier
Publisher: Springer Science & Business Media
ISBN: 1402060424
Category : Technology & Engineering
Languages : en
Pages : 550
Book Description
In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.
Advances in Fractional Calculus
Author: J. Sabatier
Publisher: Springer Science & Business Media
ISBN: 1402060424
Category : Technology & Engineering
Languages : en
Pages : 550
Book Description
In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.
Publisher: Springer Science & Business Media
ISBN: 1402060424
Category : Technology & Engineering
Languages : en
Pages : 550
Book Description
In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.
Applications Of Fractional Calculus In Physics
Author: Rudolf Hilfer
Publisher: World Scientific
ISBN: 9814496200
Category : Science
Languages : en
Pages : 473
Book Description
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.
Publisher: World Scientific
ISBN: 9814496200
Category : Science
Languages : en
Pages : 473
Book Description
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.
Fractional Calculus
Author: Richard Herrmann
Publisher: World Scientific
ISBN: 9814340243
Category : Science
Languages : en
Pages : 274
Book Description
Fractional calculus is undergoing rapidly and ongoing development. We can already recognize, that within its framework new concepts and strategies emerge, which lead to new challenging insights and surprising correlations between different branches of physics. This book is an invitation both to the interested student and the professional researcher. It presents a thorough introduction to the basics of fractional calculus and guides the reader directly to the current state-of-the-art physical interpretation. It is also devoted to the application of fractional calculus on physical problems, in the subjects of classical mechanics, friction, damping, oscillations, group theory, quantum mechanics, nuclear physics, and hadron spectroscopy up to quantum field theory.
Publisher: World Scientific
ISBN: 9814340243
Category : Science
Languages : en
Pages : 274
Book Description
Fractional calculus is undergoing rapidly and ongoing development. We can already recognize, that within its framework new concepts and strategies emerge, which lead to new challenging insights and surprising correlations between different branches of physics. This book is an invitation both to the interested student and the professional researcher. It presents a thorough introduction to the basics of fractional calculus and guides the reader directly to the current state-of-the-art physical interpretation. It is also devoted to the application of fractional calculus on physical problems, in the subjects of classical mechanics, friction, damping, oscillations, group theory, quantum mechanics, nuclear physics, and hadron spectroscopy up to quantum field theory.
New Trends in Nanotechnology and Fractional Calculus Applications
Author: Dumitru Baleanu
Publisher: Springer Science & Business Media
ISBN: 9048132932
Category : Technology & Engineering
Languages : en
Pages : 518
Book Description
In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians.
Publisher: Springer Science & Business Media
ISBN: 9048132932
Category : Technology & Engineering
Languages : en
Pages : 518
Book Description
In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians.
Fractional Dynamics
Author: Vasily E. Tarasov
Publisher: Springer Science & Business Media
ISBN: 3642140033
Category : Science
Languages : en
Pages : 504
Book Description
"Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and an Associate Professor at Applied Mathematics and Physics Department of Moscow Aviation Institute.
Publisher: Springer Science & Business Media
ISBN: 3642140033
Category : Science
Languages : en
Pages : 504
Book Description
"Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and an Associate Professor at Applied Mathematics and Physics Department of Moscow Aviation Institute.
Fractional Calculus and Its Applications
Author: B. Ross
Publisher: Springer
ISBN: 3540699759
Category : Mathematics
Languages : en
Pages : 391
Book Description
Publisher: Springer
ISBN: 3540699759
Category : Mathematics
Languages : en
Pages : 391
Book Description
Fractional Calculus
Author: Roy Abi Zeid Daou
Publisher: Nova Science Publishers
ISBN: 9781634630023
Category : Fractional calculus
Languages : en
Pages : 0
Book Description
The first volume of this two-volume book, presents history, the mathematical modelling and the applications of fractional order systems, and contains mathematical and theoretical studies and research related to this domain. This volume is made up of 11 chapters. The first chapter presents an analysis of the Caputo derivative and the pseudo state representation with the infinite state approach. The second chapter studies the stability of a class of fractional Cauchy problems. The third chapter shows how to solve fractional order differential equations and fractional order partial differential equations using modern matrix algebraic approaches. Following this chapter, chapter four proposes another analytical method to solve differential equations with local fractional derivative operators. Concerning chapter five, it presents the extended Borel transform and its related fractional analysis. After presenting the analytical resolution methods for fractional calculus, chapter six shows the essentials of fractional calculus on discrete settings. The initialisation of such systems is shown in chapter seven. In fact, this chapter presents a generalised application of the Hankel operator for initialisation of fractional order systems. The last four chapters show some new studies and applications of non-integer calculus. In fact, chapter eight presents the fractional reaction-transport equations and evanescent continuous time random walks. Chapter nine shows a novel approach in the exponential integrators for fractional differential equations. Chapter ten presents the non-fragile tuning of fractional order PD controllers for integrating time delay systems. At the end, chapter eleven proposes a discrete finite-dimensional approximation of linear infinite dimensional systems. To sum up, this volume presents a mathematical and theoretical study of fractional calculus along with a stability study and some applications. This volume ends up with some new techniques and methods applied in fractional calculus. This volume will be followed up by a second volume that focuses on the applications of fractional calculus in several engineering domains.
Publisher: Nova Science Publishers
ISBN: 9781634630023
Category : Fractional calculus
Languages : en
Pages : 0
Book Description
The first volume of this two-volume book, presents history, the mathematical modelling and the applications of fractional order systems, and contains mathematical and theoretical studies and research related to this domain. This volume is made up of 11 chapters. The first chapter presents an analysis of the Caputo derivative and the pseudo state representation with the infinite state approach. The second chapter studies the stability of a class of fractional Cauchy problems. The third chapter shows how to solve fractional order differential equations and fractional order partial differential equations using modern matrix algebraic approaches. Following this chapter, chapter four proposes another analytical method to solve differential equations with local fractional derivative operators. Concerning chapter five, it presents the extended Borel transform and its related fractional analysis. After presenting the analytical resolution methods for fractional calculus, chapter six shows the essentials of fractional calculus on discrete settings. The initialisation of such systems is shown in chapter seven. In fact, this chapter presents a generalised application of the Hankel operator for initialisation of fractional order systems. The last four chapters show some new studies and applications of non-integer calculus. In fact, chapter eight presents the fractional reaction-transport equations and evanescent continuous time random walks. Chapter nine shows a novel approach in the exponential integrators for fractional differential equations. Chapter ten presents the non-fragile tuning of fractional order PD controllers for integrating time delay systems. At the end, chapter eleven proposes a discrete finite-dimensional approximation of linear infinite dimensional systems. To sum up, this volume presents a mathematical and theoretical study of fractional calculus along with a stability study and some applications. This volume ends up with some new techniques and methods applied in fractional calculus. This volume will be followed up by a second volume that focuses on the applications of fractional calculus in several engineering domains.
Fractional Calculus for Hydrology, Soil Science and Geomechanics
Author: Ninghu Su
Publisher: CRC Press
ISBN: 1351032402
Category : Science
Languages : en
Pages : 410
Book Description
This book is an unique integrated treatise, on the concepts of fractional calculus as models with applications in hydrology, soil science and geomechanics. The models are primarily fractional partial differential equations (fPDEs), and in limited cases, fractional differential equations (fDEs). It develops and applies relevant fPDEs and fDEs mainly to water flow and solute transport in porous media and overland, and in some cases, to concurrent flow and energy transfer. It is an integrated resource with theory and applications for those interested in hydrology, hydraulics and fluid mechanics. The self-contained book summaries the fundamentals for porous media and essential mathematics with extensive references supporting the development of the model and applications.
Publisher: CRC Press
ISBN: 1351032402
Category : Science
Languages : en
Pages : 410
Book Description
This book is an unique integrated treatise, on the concepts of fractional calculus as models with applications in hydrology, soil science and geomechanics. The models are primarily fractional partial differential equations (fPDEs), and in limited cases, fractional differential equations (fDEs). It develops and applies relevant fPDEs and fDEs mainly to water flow and solute transport in porous media and overland, and in some cases, to concurrent flow and energy transfer. It is an integrated resource with theory and applications for those interested in hydrology, hydraulics and fluid mechanics. The self-contained book summaries the fundamentals for porous media and essential mathematics with extensive references supporting the development of the model and applications.
Fractional Derivatives for Physicists and Engineers
Author: Vladimir V. Uchaikin
Publisher: Springer Science & Business Media
ISBN: 3642339115
Category : Science
Languages : en
Pages : 400
Book Description
The first derivative of a particle coordinate means its velocity, the second means its acceleration, but what does a fractional order derivative mean? Where does it come from, how does it work, where does it lead to? The two-volume book written on high didactic level answers these questions. Fractional Derivatives for Physicists and Engineers— The first volume contains a clear introduction into such a modern branch of analysis as the fractional calculus. The second develops a wide panorama of applications of the fractional calculus to various physical problems. This book recovers new perspectives in front of the reader dealing with turbulence and semiconductors, plasma and thermodynamics, mechanics and quantum optics, nanophysics and astrophysics. The book is addressed to students, engineers and physicists, specialists in theory of probability and statistics, in mathematical modeling and numerical simulations, to everybody who doesn't wish to stay apart from the new mathematical methods becoming more and more popular. Prof. Vladimir V. UCHAIKIN is a known Russian scientist and pedagogue, a Honored Worker of Russian High School, a member of the Russian Academy of Natural Sciences. He is the author of about three hundreds articles and more than a dozen books (mostly in Russian) in Cosmic ray physics, Mathematical physics, Levy stable statistics, Monte Carlo methods with applications to anomalous processes in complex systems of various levels: from quantum dots to the Milky Way galaxy.
Publisher: Springer Science & Business Media
ISBN: 3642339115
Category : Science
Languages : en
Pages : 400
Book Description
The first derivative of a particle coordinate means its velocity, the second means its acceleration, but what does a fractional order derivative mean? Where does it come from, how does it work, where does it lead to? The two-volume book written on high didactic level answers these questions. Fractional Derivatives for Physicists and Engineers— The first volume contains a clear introduction into such a modern branch of analysis as the fractional calculus. The second develops a wide panorama of applications of the fractional calculus to various physical problems. This book recovers new perspectives in front of the reader dealing with turbulence and semiconductors, plasma and thermodynamics, mechanics and quantum optics, nanophysics and astrophysics. The book is addressed to students, engineers and physicists, specialists in theory of probability and statistics, in mathematical modeling and numerical simulations, to everybody who doesn't wish to stay apart from the new mathematical methods becoming more and more popular. Prof. Vladimir V. UCHAIKIN is a known Russian scientist and pedagogue, a Honored Worker of Russian High School, a member of the Russian Academy of Natural Sciences. He is the author of about three hundreds articles and more than a dozen books (mostly in Russian) in Cosmic ray physics, Mathematical physics, Levy stable statistics, Monte Carlo methods with applications to anomalous processes in complex systems of various levels: from quantum dots to the Milky Way galaxy.
General Fractional Derivatives with Applications in Viscoelasticity
Author: Xiao-Jun Yang
Publisher: Academic Press
ISBN: 0128172096
Category : Mathematics
Languages : en
Pages : 456
Book Description
General Fractional Derivatives with Applications in Viscoelasticity introduces the newly established fractional-order calculus operators involving singular and non-singular kernels with applications to fractional-order viscoelastic models from the calculus operator viewpoint. Fractional calculus and its applications have gained considerable popularity and importance because of their applicability to many seemingly diverse and widespread fields in science and engineering. Many operations in physics and engineering can be defined accurately by using fractional derivatives to model complex phenomena. Viscoelasticity is chief among them, as the general fractional calculus approach to viscoelasticity has evolved as an empirical method of describing the properties of viscoelastic materials. General Fractional Derivatives with Applications in Viscoelasticity makes a concise presentation of general fractional calculus. - Presents a comprehensive overview of the fractional derivatives and their applications in viscoelasticity - Provides help in handling the power-law functions - Introduces and explores the questions about general fractional derivatives and its applications
Publisher: Academic Press
ISBN: 0128172096
Category : Mathematics
Languages : en
Pages : 456
Book Description
General Fractional Derivatives with Applications in Viscoelasticity introduces the newly established fractional-order calculus operators involving singular and non-singular kernels with applications to fractional-order viscoelastic models from the calculus operator viewpoint. Fractional calculus and its applications have gained considerable popularity and importance because of their applicability to many seemingly diverse and widespread fields in science and engineering. Many operations in physics and engineering can be defined accurately by using fractional derivatives to model complex phenomena. Viscoelasticity is chief among them, as the general fractional calculus approach to viscoelasticity has evolved as an empirical method of describing the properties of viscoelastic materials. General Fractional Derivatives with Applications in Viscoelasticity makes a concise presentation of general fractional calculus. - Presents a comprehensive overview of the fractional derivatives and their applications in viscoelasticity - Provides help in handling the power-law functions - Introduces and explores the questions about general fractional derivatives and its applications