Author: Umberto Cherubini
Publisher: John Wiley & Sons
ISBN: 0470684925
Category : Business & Economics
Languages : en
Pages : 326
Book Description
In recent years, Fourier transform methods have emerged as one of the major methodologies for the evaluation of derivative contracts, largely due to the need to strike a balance between the extension of existing pricing models beyond the traditional Black-Scholes setting and a need to evaluate prices consistently with the market quotes. Fourier Transform Methods in Finance is a practical and accessible guide to pricing financial instruments using Fourier transform. Written by an experienced team of practitioners and academics, it covers Fourier pricing methods; the dynamics of asset prices; non stationary market dynamics; arbitrage free pricing; generalized functions and the Fourier transform method. Readers will learn how to: compute the Hilbert transform of the pricing kernel under a Fast Fourier Transform (FFT) technique characterise the price dynamics on a market in terms of the characteristic function, allowing for both diffusive processes and jumps apply the concept of characteristic function to non-stationary processes, in particular in the presence of stochastic volatility and more generally time change techniques perform a change of measure on the characteristic function in order to make the price process a martingale recover a general representation of the pricing kernel of the economy in terms of Hilbert transform using the theory of generalised functions apply the pricing formula to the most famous pricing models, with stochastic volatility and jumps. Junior and senior practitioners alike will benefit from this quick reference guide to state of the art models and market calibration techniques. Not only will it enable them to write an algorithm for option pricing using the most advanced models, calibrate a pricing model on options data, and extract the implied probability distribution in market data, they will also understand the most advanced models and techniques and discover how these techniques have been adjusted for applications in finance. ISBN 978-0-470-99400-9
Computational Methods in Finance
Author: Ali Hirsa
Publisher: CRC Press
ISBN: 1466576049
Category : Business & Economics
Languages : en
Pages : 440
Book Description
Helping readers accurately price a vast array of derivatives, this self-contained text explains how to solve complex functional equations through numerical methods. It addresses key computational methods in finance, including transform techniques, the finite difference method, and Monte Carlo simulation. Developed from his courses at Columbia University and the Courant Institute of New York University, the author also covers model calibration and optimization and describes techniques, such as Kalman and particle filters, for parameter estimation.
Publisher: CRC Press
ISBN: 1466576049
Category : Business & Economics
Languages : en
Pages : 440
Book Description
Helping readers accurately price a vast array of derivatives, this self-contained text explains how to solve complex functional equations through numerical methods. It addresses key computational methods in finance, including transform techniques, the finite difference method, and Monte Carlo simulation. Developed from his courses at Columbia University and the Courant Institute of New York University, the author also covers model calibration and optimization and describes techniques, such as Kalman and particle filters, for parameter estimation.
Fourier Transform Methods in Finance
Author: Umberto Cherubini
Publisher: John Wiley & Sons
ISBN: 0470684925
Category : Business & Economics
Languages : en
Pages : 326
Book Description
In recent years, Fourier transform methods have emerged as one of the major methodologies for the evaluation of derivative contracts, largely due to the need to strike a balance between the extension of existing pricing models beyond the traditional Black-Scholes setting and a need to evaluate prices consistently with the market quotes. Fourier Transform Methods in Finance is a practical and accessible guide to pricing financial instruments using Fourier transform. Written by an experienced team of practitioners and academics, it covers Fourier pricing methods; the dynamics of asset prices; non stationary market dynamics; arbitrage free pricing; generalized functions and the Fourier transform method. Readers will learn how to: compute the Hilbert transform of the pricing kernel under a Fast Fourier Transform (FFT) technique characterise the price dynamics on a market in terms of the characteristic function, allowing for both diffusive processes and jumps apply the concept of characteristic function to non-stationary processes, in particular in the presence of stochastic volatility and more generally time change techniques perform a change of measure on the characteristic function in order to make the price process a martingale recover a general representation of the pricing kernel of the economy in terms of Hilbert transform using the theory of generalised functions apply the pricing formula to the most famous pricing models, with stochastic volatility and jumps. Junior and senior practitioners alike will benefit from this quick reference guide to state of the art models and market calibration techniques. Not only will it enable them to write an algorithm for option pricing using the most advanced models, calibrate a pricing model on options data, and extract the implied probability distribution in market data, they will also understand the most advanced models and techniques and discover how these techniques have been adjusted for applications in finance. ISBN 978-0-470-99400-9
Publisher: John Wiley & Sons
ISBN: 0470684925
Category : Business & Economics
Languages : en
Pages : 326
Book Description
In recent years, Fourier transform methods have emerged as one of the major methodologies for the evaluation of derivative contracts, largely due to the need to strike a balance between the extension of existing pricing models beyond the traditional Black-Scholes setting and a need to evaluate prices consistently with the market quotes. Fourier Transform Methods in Finance is a practical and accessible guide to pricing financial instruments using Fourier transform. Written by an experienced team of practitioners and academics, it covers Fourier pricing methods; the dynamics of asset prices; non stationary market dynamics; arbitrage free pricing; generalized functions and the Fourier transform method. Readers will learn how to: compute the Hilbert transform of the pricing kernel under a Fast Fourier Transform (FFT) technique characterise the price dynamics on a market in terms of the characteristic function, allowing for both diffusive processes and jumps apply the concept of characteristic function to non-stationary processes, in particular in the presence of stochastic volatility and more generally time change techniques perform a change of measure on the characteristic function in order to make the price process a martingale recover a general representation of the pricing kernel of the economy in terms of Hilbert transform using the theory of generalised functions apply the pricing formula to the most famous pricing models, with stochastic volatility and jumps. Junior and senior practitioners alike will benefit from this quick reference guide to state of the art models and market calibration techniques. Not only will it enable them to write an algorithm for option pricing using the most advanced models, calibrate a pricing model on options data, and extract the implied probability distribution in market data, they will also understand the most advanced models and techniques and discover how these techniques have been adjusted for applications in finance. ISBN 978-0-470-99400-9
Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes
Author: Cornelis W Oosterlee
Publisher: World Scientific
ISBN: 1786347962
Category : Business & Economics
Languages : en
Pages : 1310
Book Description
This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.
Publisher: World Scientific
ISBN: 1786347962
Category : Business & Economics
Languages : en
Pages : 1310
Book Description
This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.
An Introduction to the Mathematics of Financial Derivatives
Author: Salih N. Neftci
Publisher: Academic Press
ISBN: 0125153929
Category : Business & Economics
Languages : en
Pages : 550
Book Description
A step-by-step explanation of the mathematical models used to price derivatives. For this second edition, Salih Neftci has expanded one chapter, added six new ones, and inserted chapter-concluding exercises. He does not assume that the reader has a thorough mathematical background. His explanations of financial calculus seek to be simple and perceptive.
Publisher: Academic Press
ISBN: 0125153929
Category : Business & Economics
Languages : en
Pages : 550
Book Description
A step-by-step explanation of the mathematical models used to price derivatives. For this second edition, Salih Neftci has expanded one chapter, added six new ones, and inserted chapter-concluding exercises. He does not assume that the reader has a thorough mathematical background. His explanations of financial calculus seek to be simple and perceptive.
An Introduction to Wavelets and Other Filtering Methods in Finance and Economics
Author: Ramazan Gençay
Publisher: Elsevier
ISBN: 0080509223
Category : Business & Economics
Languages : en
Pages : 383
Book Description
An Introduction to Wavelets and Other Filtering Methods in Finance and Economics presents a unified view of filtering techniques with a special focus on wavelet analysis in finance and economics. It emphasizes the methods and explanations of the theory that underlies them. It also concentrates on exactly what wavelet analysis (and filtering methods in general) can reveal about a time series. It offers testing issues which can be performed with wavelets in conjunction with the multi-resolution analysis. The descriptive focus of the book avoids proofs and provides easy access to a wide spectrum of parametric and nonparametric filtering methods. Examples and empirical applications will show readers the capabilities, advantages, and disadvantages of each method. - The first book to present a unified view of filtering techniques - Concentrates on exactly what wavelets analysis and filtering methods in general can reveal about a time series - Provides easy access to a wide spectrum of parametric and non-parametric filtering methods
Publisher: Elsevier
ISBN: 0080509223
Category : Business & Economics
Languages : en
Pages : 383
Book Description
An Introduction to Wavelets and Other Filtering Methods in Finance and Economics presents a unified view of filtering techniques with a special focus on wavelet analysis in finance and economics. It emphasizes the methods and explanations of the theory that underlies them. It also concentrates on exactly what wavelet analysis (and filtering methods in general) can reveal about a time series. It offers testing issues which can be performed with wavelets in conjunction with the multi-resolution analysis. The descriptive focus of the book avoids proofs and provides easy access to a wide spectrum of parametric and nonparametric filtering methods. Examples and empirical applications will show readers the capabilities, advantages, and disadvantages of each method. - The first book to present a unified view of filtering techniques - Concentrates on exactly what wavelets analysis and filtering methods in general can reveal about a time series - Provides easy access to a wide spectrum of parametric and non-parametric filtering methods
Finite Difference Methods in Financial Engineering
Author: Daniel J. Duffy
Publisher: John Wiley & Sons
ISBN: 1118856481
Category : Business & Economics
Languages : en
Pages : 452
Book Description
The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.
Publisher: John Wiley & Sons
ISBN: 1118856481
Category : Business & Economics
Languages : en
Pages : 452
Book Description
The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.
Mathematical Finance - Bachelier Congress 2000
Author: Helyette Geman
Publisher: Springer Science & Business Media
ISBN: 3662124297
Category : Mathematics
Languages : en
Pages : 522
Book Description
The Bachelier Society for Mathematical Finance held its first World Congress in Paris last year, and coincided with the centenary of Louis Bacheliers thesis defence. In his thesis Bachelier introduces Brownian motion as a tool for the analysis of financial markets as well as the exact definition of options. The thesis is viewed by many the key event that marked the emergence of mathematical finance as a scientific discipline. The prestigious list of plenary speakers in Paris included two Nobel laureates, Paul Samuelson and Robert Merton, and the mathematicians Henry McKean and S.R.S. Varadhan. Over 130 further selected talks were given in three parallel sessions. .
Publisher: Springer Science & Business Media
ISBN: 3662124297
Category : Mathematics
Languages : en
Pages : 522
Book Description
The Bachelier Society for Mathematical Finance held its first World Congress in Paris last year, and coincided with the centenary of Louis Bacheliers thesis defence. In his thesis Bachelier introduces Brownian motion as a tool for the analysis of financial markets as well as the exact definition of options. The thesis is viewed by many the key event that marked the emergence of mathematical finance as a scientific discipline. The prestigious list of plenary speakers in Paris included two Nobel laureates, Paul Samuelson and Robert Merton, and the mathematicians Henry McKean and S.R.S. Varadhan. Over 130 further selected talks were given in three parallel sessions. .
Mathematical Techniques in Finance
Author: Ales Cerný
Publisher: Princeton University Press
ISBN: 1400831482
Category : Business & Economics
Languages : en
Pages : 414
Book Description
Originally published in 2003, Mathematical Techniques in Finance has become a standard textbook for master's-level finance courses containing a significant quantitative element while also being suitable for finance PhD students. This fully revised second edition continues to offer a carefully crafted blend of numerical applications and theoretical grounding in economics, finance, and mathematics, and provides plenty of opportunities for students to practice applied mathematics and cutting-edge finance. Ales Cerný mixes tools from calculus, linear algebra, probability theory, numerical mathematics, and programming to analyze in an accessible way some of the most intriguing problems in financial economics. The textbook is the perfect hands-on introduction to asset pricing, optimal portfolio selection, risk measurement, and investment evaluation. The new edition includes the most recent research in the area of incomplete markets and unhedgeable risks, adds a chapter on finite difference methods, and thoroughly updates all bibliographic references. Eighty figures, over seventy examples, twenty-five simple ready-to-run computer programs, and several spreadsheets enhance the learning experience. All computer codes have been rewritten using MATLAB and online supplementary materials have been completely updated. A standard textbook for graduate finance courses Introduction to asset pricing, portfolio selection, risk measurement, and investment evaluation Detailed examples and MATLAB codes integrated throughout the text Exercises and summaries of main points conclude each chapter
Publisher: Princeton University Press
ISBN: 1400831482
Category : Business & Economics
Languages : en
Pages : 414
Book Description
Originally published in 2003, Mathematical Techniques in Finance has become a standard textbook for master's-level finance courses containing a significant quantitative element while also being suitable for finance PhD students. This fully revised second edition continues to offer a carefully crafted blend of numerical applications and theoretical grounding in economics, finance, and mathematics, and provides plenty of opportunities for students to practice applied mathematics and cutting-edge finance. Ales Cerný mixes tools from calculus, linear algebra, probability theory, numerical mathematics, and programming to analyze in an accessible way some of the most intriguing problems in financial economics. The textbook is the perfect hands-on introduction to asset pricing, optimal portfolio selection, risk measurement, and investment evaluation. The new edition includes the most recent research in the area of incomplete markets and unhedgeable risks, adds a chapter on finite difference methods, and thoroughly updates all bibliographic references. Eighty figures, over seventy examples, twenty-five simple ready-to-run computer programs, and several spreadsheets enhance the learning experience. All computer codes have been rewritten using MATLAB and online supplementary materials have been completely updated. A standard textbook for graduate finance courses Introduction to asset pricing, portfolio selection, risk measurement, and investment evaluation Detailed examples and MATLAB codes integrated throughout the text Exercises and summaries of main points conclude each chapter
II: Fourier Analysis, Self-Adjointness
Author: Michael Reed
Publisher: Elsevier
ISBN: 9780125850025
Category : Mathematics
Languages : en
Pages : 388
Book Description
Band 2.
Publisher: Elsevier
ISBN: 9780125850025
Category : Mathematics
Languages : en
Pages : 388
Book Description
Band 2.
A Guide to Distribution Theory and Fourier Transforms
Author: Robert S. Strichartz
Publisher: World Scientific
ISBN: 9789812384300
Category : Mathematics
Languages : en
Pages : 238
Book Description
This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.
Publisher: World Scientific
ISBN: 9789812384300
Category : Mathematics
Languages : en
Pages : 238
Book Description
This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.