Author: Dinakar Ramakrishnan
Publisher: Springer Science & Business Media
ISBN: 1475730853
Category : Mathematics
Languages : en
Pages : 372
Book Description
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
Fourier Analysis on Number Fields
Author: Dinakar Ramakrishnan
Publisher: Springer Science & Business Media
ISBN: 1475730853
Category : Mathematics
Languages : en
Pages : 372
Book Description
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
Publisher: Springer Science & Business Media
ISBN: 1475730853
Category : Mathematics
Languages : en
Pages : 372
Book Description
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
Discrete Harmonic Analysis
Author: Tullio Ceccherini-Silberstein
Publisher: Cambridge University Press
ISBN: 1107182336
Category : Mathematics
Languages : en
Pages : 589
Book Description
A self-contained introduction to discrete harmonic analysis with an emphasis on the Discrete and Fast Fourier Transforms.
Publisher: Cambridge University Press
ISBN: 1107182336
Category : Mathematics
Languages : en
Pages : 589
Book Description
A self-contained introduction to discrete harmonic analysis with an emphasis on the Discrete and Fast Fourier Transforms.
An Introduction to Fourier Analysis
Author: Russell L. Herman
Publisher: CRC Press
ISBN: 1498773710
Category : Mathematics
Languages : en
Pages : 402
Book Description
This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: • Convergence and summation of infinite series • Representation of functions by infinite series • Trigonometric and Generalized Fourier series • Legendre, Bessel, gamma, and delta functions • Complex numbers and functions • Analytic functions and integration in the complex plane • Fourier and Laplace transforms. • The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.
Publisher: CRC Press
ISBN: 1498773710
Category : Mathematics
Languages : en
Pages : 402
Book Description
This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: • Convergence and summation of infinite series • Representation of functions by infinite series • Trigonometric and Generalized Fourier series • Legendre, Bessel, gamma, and delta functions • Complex numbers and functions • Analytic functions and integration in the complex plane • Fourier and Laplace transforms. • The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.
Fourier Analysis on Finite Abelian Groups
Author: Bao Luong
Publisher: Springer Science & Business Media
ISBN: 0817649166
Category : Mathematics
Languages : en
Pages : 167
Book Description
This unified, self-contained book examines the mathematical tools used for decomposing and analyzing functions, specifically, the application of the [discrete] Fourier transform to finite Abelian groups. With countless examples and unique exercise sets at the end of each section, Fourier Analysis on Finite Abelian Groups is a perfect companion to a first course in Fourier analysis. This text introduces mathematics students to subjects that are within their reach, but it also has powerful applications that may appeal to advanced researchers and mathematicians. The only prerequisites necessary are group theory, linear algebra, and complex analysis.
Publisher: Springer Science & Business Media
ISBN: 0817649166
Category : Mathematics
Languages : en
Pages : 167
Book Description
This unified, self-contained book examines the mathematical tools used for decomposing and analyzing functions, specifically, the application of the [discrete] Fourier transform to finite Abelian groups. With countless examples and unique exercise sets at the end of each section, Fourier Analysis on Finite Abelian Groups is a perfect companion to a first course in Fourier analysis. This text introduces mathematics students to subjects that are within their reach, but it also has powerful applications that may appeal to advanced researchers and mathematicians. The only prerequisites necessary are group theory, linear algebra, and complex analysis.
Fourier Analysis
Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831237
Category : Mathematics
Languages : en
Pages : 326
Book Description
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Publisher: Princeton University Press
ISBN: 1400831237
Category : Mathematics
Languages : en
Pages : 326
Book Description
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Fourier Analysis of Numerical Approximations of Hyperbolic Equations
Author: R. Vichnevetsky
Publisher: SIAM
ISBN: 0898713927
Category : Technology & Engineering
Languages : en
Pages : 146
Book Description
This book provides useful reference material for those concerned with the use of Fourier analysis and computational fluid dynamics.
Publisher: SIAM
ISBN: 0898713927
Category : Technology & Engineering
Languages : en
Pages : 146
Book Description
This book provides useful reference material for those concerned with the use of Fourier analysis and computational fluid dynamics.
Number Theory in Function Fields
Author: Michael Rosen
Publisher: Springer Science & Business Media
ISBN: 1475760469
Category : Mathematics
Languages : en
Pages : 355
Book Description
Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.
Publisher: Springer Science & Business Media
ISBN: 1475760469
Category : Mathematics
Languages : en
Pages : 355
Book Description
Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.
Computational Frameworks for the Fast Fourier Transform
Author: Charles Van Loan
Publisher: SIAM
ISBN: 0898712858
Category : Mathematics
Languages : en
Pages : 285
Book Description
The author captures the interplay between mathematics and the design of effective numerical algorithms.
Publisher: SIAM
ISBN: 0898712858
Category : Mathematics
Languages : en
Pages : 285
Book Description
The author captures the interplay between mathematics and the design of effective numerical algorithms.
Analysis of Boolean Functions
Author: Ryan O'Donnell
Publisher: Cambridge University Press
ISBN: 1107038324
Category : Computers
Languages : en
Pages : 445
Book Description
This graduate-level text gives a thorough overview of the analysis of Boolean functions, beginning with the most basic definitions and proceeding to advanced topics.
Publisher: Cambridge University Press
ISBN: 1107038324
Category : Computers
Languages : en
Pages : 445
Book Description
This graduate-level text gives a thorough overview of the analysis of Boolean functions, beginning with the most basic definitions and proceeding to advanced topics.
P-adic Analysis and Mathematical Physics
Author: Vasili? Sergeevich Vladimirov
Publisher: World Scientific
ISBN: 9789810208806
Category : Science
Languages : en
Pages : 350
Book Description
p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.
Publisher: World Scientific
ISBN: 9789810208806
Category : Science
Languages : en
Pages : 350
Book Description
p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.