Fourier Analysis and Boundary Value Problems

Fourier Analysis and Boundary Value Problems PDF Author: Enrique A. Gonzalez-Velasco
Publisher: Elsevier
ISBN: 0080531938
Category : Mathematics
Languages : en
Pages : 565

Book Description
Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics. A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field. - Topics are covered from a historical perspective with biographical information on key contributors to the field - The text contains more than 500 exercises - Includes practical applications of the equations to problems in both engineering and physics

Fourier Series, Transforms, and Boundary Value Problems

Fourier Series, Transforms, and Boundary Value Problems PDF Author: J. Ray Hanna
Publisher: Courier Corporation
ISBN: 0486466736
Category : Mathematics
Languages : en
Pages : 370

Book Description
This volume introduces Fourier and transform methods for solutions to boundary value problems associated with natural phenomena. Unlike most treatments, it emphasizes basic concepts and techniques rather than theory. Many of the exercises include solutions, with detailed outlines that make it easy to follow the appropriate sequence of steps. 1990 edition.

Schaum's Outline of Theory and Problems of Probability and Statistics

Schaum's Outline of Theory and Problems of Probability and Statistics PDF Author: Murray R. Spiegel
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 372

Book Description


Ordinary and Partial Differential Equations

Ordinary and Partial Differential Equations PDF Author: Ravi P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 0387791469
Category : Mathematics
Languages : en
Pages : 422

Book Description
In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.

Partial Differential Equations with Fourier Series and Boundary Value Problems

Partial Differential Equations with Fourier Series and Boundary Value Problems PDF Author: Nakhle H. Asmar
Publisher: Courier Dover Publications
ISBN: 0486820831
Category : Mathematics
Languages : en
Pages : 818

Book Description
Rich in proofs, examples, and exercises, this widely adopted text emphasizes physics and engineering applications. The Student Solutions Manual can be downloaded free from Dover's site; instructions for obtaining the Instructor Solutions Manual is included in the book. 2004 edition, with minor revisions.

Partial Differential Equations and Boundary-Value Problems with Applications

Partial Differential Equations and Boundary-Value Problems with Applications PDF Author: Mark A. Pinsky
Publisher: American Mathematical Soc.
ISBN: 0821868896
Category : Mathematics
Languages : en
Pages : 545

Book Description
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

Unified Transform for Boundary Value Problems

Unified Transform for Boundary Value Problems PDF Author: Athanasios S. Fokas
Publisher: SIAM
ISBN: 1611973813
Category : Mathematics
Languages : en
Pages : 290

Book Description
This book describes state-of-the-art advances and applications of the unified transform and its relation to the boundary element method. The authors present the solution of boundary value problems from several different perspectives, in particular the type of problems modeled by partial differential equations (PDEs). They discuss recent applications of the unified transform to the analysis and numerical modeling of boundary value problems for linear and integrable nonlinear PDEs and the closely related boundary element method, a well-established numerical approach for solving linear elliptic PDEs.? The text is divided into three parts. Part I contains new theoretical results on linear and nonlinear evolutionary and elliptic problems. New explicit solution representations for several classes of boundary value problems are constructed and rigorously analyzed. Part II is a detailed overview of variational formulations for elliptic problems. It places the unified transform approach in a classic context alongside the boundary element method and stresses its novelty. Part III presents recent numerical applications based on the boundary element method and on the unified transform.

Boundary Value Problems and Fourier Expansions

Boundary Value Problems and Fourier Expansions PDF Author: Charles R. MacCluer
Publisher: Dover Publications
ISBN: 9780486788678
Category :
Languages : en
Pages : 384

Book Description
Based on modern Sobolev methods, this text integrates numerical methods and symbolic manipulation into an elegant viewpoint that is consonant with implementation by digital computer. 2004 edition. Includes 64 figures. Exercises.

Elementary Applied Partial Differential Equations

Elementary Applied Partial Differential Equations PDF Author: Richard Haberman
Publisher:
ISBN: 9780132638074
Category : Boundary value problems
Languages : en
Pages : 0

Book Description
This work aims to help the beginning student to understand the relationship between mathematics and physical problems, emphasizing examples and problem-solving.

Fourier Analysis

Fourier Analysis PDF Author: Eric Stade
Publisher: John Wiley & Sons
ISBN: 1118165519
Category : Mathematics
Languages : en
Pages : 519

Book Description
A reader-friendly, systematic introduction to Fourier analysis Rich in both theory and application, Fourier Analysis presents a unique and thorough approach to a key topic in advanced calculus. This pioneering resource tells the full story of Fourier analysis, including its history and its impact on the development of modern mathematical analysis, and also discusses essential concepts and today's applications. Written at a rigorous level, yet in an engaging style that does not dilute the material, Fourier Analysis brings two profound aspects of the discipline to the forefront: the wealth of applications of Fourier analysis in the natural sciences and the enormous impact Fourier analysis has had on the development of mathematics as a whole. Systematic and comprehensive, the book: Presents material using a cause-and-effect approach, illustrating where ideas originated and what necessitated them Includes material on wavelets, Lebesgue integration, L2 spaces, and related concepts Conveys information in a lucid, readable style, inspiring further reading and research on the subject Provides exercises at the end of each section, as well as illustrations and worked examples throughout the text Based upon the principle that theory and practice are fundamentally linked, Fourier Analysis is the ideal text and reference for students in mathematics, engineering, and physics, as well as scientists and technicians in a broad range of disciplines who use Fourier analysis in real-world situations.