Transition to Higher Mathematics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Transition to Higher Mathematics PDF full book. Access full book title Transition to Higher Mathematics by Bob A. Dumas. Download full books in PDF and EPUB format.

Transition to Higher Mathematics

Transition to Higher Mathematics PDF Author: Bob A. Dumas
Publisher: McGraw-Hill Education
ISBN: 9780071106474
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0

Book Description
This book is written for students who have taken calculus and want to learn what "real mathematics" is.

Transition to Higher Mathematics

Transition to Higher Mathematics PDF Author: Bob A. Dumas
Publisher: McGraw-Hill Education
ISBN: 9780071106474
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0

Book Description
This book is written for students who have taken calculus and want to learn what "real mathematics" is.

Foundations for Higher Mathematics

Foundations for Higher Mathematics PDF Author: Wendell Motter
Publisher:
ISBN: 9781081357788
Category :
Languages : en
Pages : 107

Book Description
This textbook prepares students for the more abstract mathematics courses that follow calculus. Appropriate for self-study or for use in courses called transition courses, this text introduces students to proof techniques, analyzing proofs, and writing proofs of their own. Written in a clear, conversational style, this book provides a solid introduction to such topics as the real number system, logic, set theory, mathematical induction, relations, functions, and continuity. It is also a good reference text that students can use when writing or reading proofs in their more advanced courses.

Foundations of Higher Mathematics

Foundations of Higher Mathematics PDF Author: Daniel M. Fendel
Publisher: Addison Wesley
ISBN:
Category : Mathematics
Languages : en
Pages : 488

Book Description
Foundations of Higher Mathematics: Exploration and Proof is the ideal text to bridge the crucial gap between the standard calculus sequence and upper division mathematics courses. The book takes a fresh approach to the subject: it asks students to explore mathematical principles on their own and challenges them to think like mathematicians. Two unique features-an exploration approach to mathematics and an intuitive and integrated presentation of logic based on predicate calculus-distinguish the book from the competition. Both features enable students to own the mathematics they're working on. As a result, your students develop a stronger motivation to tackle upper-level courses and gain a deeper understanding of concepts presented.

Bridge to Higher Mathematics

Bridge to Higher Mathematics PDF Author: Sam Vandervelde
Publisher: Lulu.com
ISBN: 055750337X
Category : Education
Languages : en
Pages : 258

Book Description
This engaging math textbook is designed to equip students who have completed a standard high school math curriculum with the tools and techniques that they will need to succeed in upper level math courses. Topics covered include logic and set theory, proof techniques, number theory, counting, induction, relations, functions, and cardinality.

Homotopy Type Theory: Univalent Foundations of Mathematics

Homotopy Type Theory: Univalent Foundations of Mathematics PDF Author:
Publisher: Univalent Foundations
ISBN:
Category :
Languages : en
Pages : 484

Book Description


Foundations of Discrete Mathematics

Foundations of Discrete Mathematics PDF Author: K. D. Joshi
Publisher: New Age International
ISBN: 9788122401202
Category : Mathematics
Languages : en
Pages : 768

Book Description
This Book Is Meant To Be More Than Just A Text In Discrete Mathematics. It Is A Forerunner Of Another Book Applied Discrete Structures By The Same Author. The Ultimate Goal Of The Two Books Are To Make A Strong Case For The Inclusion Of Discrete Mathematics In The Undergraduate Curricula Of Mathematics By Creating A Sequence Of Courses In Discrete Mathematics Parallel To The Traditional Sequence Of Calculus-Based Courses.The Present Book Covers The Foundations Of Discrete Mathematics In Seven Chapters. It Lays A Heavy Emphasis On Motivation And Attempts Clarity Without Sacrificing Rigour. A List Of Typical Problems Is Given In The First Chapter. These Problems Are Used Throughout The Book To Motivate Various Concepts. A Review Of Logic Is Included To Gear The Reader Into A Proper Frame Of Mind. The Basic Counting Techniques Are Covered In Chapters 2 And 7. Those In Chapter 2 Are Elementary. But They Are Intentionally Covered In A Formal Manner So As To Acquaint The Reader With The Traditional Definition-Theorem-Proof Pattern Of Mathematics. Chapters 3 Introduces Abstraction And Shows How The Focal Point Of Todays Mathematics Is Not Numbers But Sets Carrying Suitable Structures. Chapter 4 Deals With Boolean Algebras And Their Applications. Chapters 5 And 6 Deal With More Traditional Topics In Algebra, Viz., Groups, Rings, Fields, Vector Spaces And Matrices.The Presentation Is Elementary And Presupposes No Mathematical Maturity On The Part Of The Reader. Instead, Comments Are Inserted Liberally To Increase His Maturity. Each Chapter Has Four Sections. Each Section Is Followed By Exercises (Of Various Degrees Of Difficulty) And By Notes And Guide To Literature. Answers To The Exercises Are Provided At The End Of The Book.

Foundations of Analysis

Foundations of Analysis PDF Author: Joseph L. Taylor
Publisher: American Mathematical Soc.
ISBN: 0821889842
Category : Mathematics
Languages : en
Pages : 411

Book Description
Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.

The Foundations of Mathematics

The Foundations of Mathematics PDF Author: Kenneth Kunen
Publisher:
ISBN: 9781904987147
Category : Mathematics
Languages : en
Pages : 251

Book Description
Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.

A Bridge to Advanced Mathematics

A Bridge to Advanced Mathematics PDF Author: Dennis Sentilles
Publisher: Courier Corporation
ISBN: 0486277585
Category : Mathematics
Languages : en
Pages : 418

Book Description
This helpful "bridge" book offers students the foundations they need to understand advanced mathematics. The two-part treatment provides basic tools and covers sets, relations, functions, mathematical proofs and reasoning, more. 1975 edition.

Proofs and Fundamentals

Proofs and Fundamentals PDF Author: Ethan D. Bloch
Publisher: Springer Science & Business Media
ISBN: 1441971270
Category : Mathematics
Languages : en
Pages : 378

Book Description
“Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.