Author: David Hilbert
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139
Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.
The Foundations of Geometry
Author: David Hilbert
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139
Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139
Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.
Foundations of Geometric Algebra Computing
Author: Dietmar Hildenbrand
Publisher: Springer Science & Business Media
ISBN: 3642317944
Category : Computers
Languages : en
Pages : 217
Book Description
The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.
Publisher: Springer Science & Business Media
ISBN: 3642317944
Category : Computers
Languages : en
Pages : 217
Book Description
The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.
New Foundations in Mathematics
Author: Garret Sobczyk
Publisher: Springer Science & Business Media
ISBN: 0817683852
Category : Mathematics
Languages : en
Pages : 373
Book Description
The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.
Publisher: Springer Science & Business Media
ISBN: 0817683852
Category : Mathematics
Languages : en
Pages : 373
Book Description
The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.
Foundations of Mathematics
Author: Philip Brown
Publisher: Mercury Learning and Information
ISBN: 1944534415
Category : Mathematics
Languages : en
Pages : 663
Book Description
Foundations of Mathematics offers the university student or interested reader a unique reference book by covering the basics of algebra, trigonometry, geometry, and calculus. There are many instances in the book to demonstrate the interplay and interconnectedness of these topics. The book presents definitions and examples throughout for clear, easy learning. Numerous exercises are included at the ends of the chapters, and readers are encouraged to complete all of them as an essential part of working through the book. It offers a unique experience for readers to understand different areas of mathematics in one clear, concise text. Instructors’ resources are available upon adoption. Features: •Covers the basics of algebra, trigonometry, geometry, and calculus •Includes all of the mathematics needed to learn calculus •Demonstrates the interplay and interconnectedness of these topics •Uses numerous examples and exercises to reinforce concepts
Publisher: Mercury Learning and Information
ISBN: 1944534415
Category : Mathematics
Languages : en
Pages : 663
Book Description
Foundations of Mathematics offers the university student or interested reader a unique reference book by covering the basics of algebra, trigonometry, geometry, and calculus. There are many instances in the book to demonstrate the interplay and interconnectedness of these topics. The book presents definitions and examples throughout for clear, easy learning. Numerous exercises are included at the ends of the chapters, and readers are encouraged to complete all of them as an essential part of working through the book. It offers a unique experience for readers to understand different areas of mathematics in one clear, concise text. Instructors’ resources are available upon adoption. Features: •Covers the basics of algebra, trigonometry, geometry, and calculus •Includes all of the mathematics needed to learn calculus •Demonstrates the interplay and interconnectedness of these topics •Uses numerous examples and exercises to reinforce concepts
Foundations of Geometry
Author: C. R. Wylie
Publisher: Courier Corporation
ISBN: 0486472140
Category : Mathematics
Languages : en
Pages : 352
Book Description
Explains geometric theories and shows many examples.
Publisher: Courier Corporation
ISBN: 0486472140
Category : Mathematics
Languages : en
Pages : 352
Book Description
Explains geometric theories and shows many examples.
Math Triumphs--Foundations for Algebra 1
Author: McGraw Hill
Publisher: McGraw-Hill Education
ISBN: 9780078908460
Category : Mathematics
Languages : en
Pages : 0
Book Description
Math Triumphs is an intensive intervention resource for students who are two or more years below grade level. The series accompanies Glencoe Algebra 1, Geometry, and Algebra 2 and provides step-by-step intervention, vocabulary support, and data-driven decision making to help students succeed in high school mathematics.
Publisher: McGraw-Hill Education
ISBN: 9780078908460
Category : Mathematics
Languages : en
Pages : 0
Book Description
Math Triumphs is an intensive intervention resource for students who are two or more years below grade level. The series accompanies Glencoe Algebra 1, Geometry, and Algebra 2 and provides step-by-step intervention, vocabulary support, and data-driven decision making to help students succeed in high school mathematics.
Algebra and Geometry
Author: Hung-Hsi Wu
Publisher: American Mathematical Soc.
ISBN: 1470456761
Category : Education
Languages : en
Pages : 417
Book Description
This is the second of three volumes that, together, give an exposition of the mathematics of grades 9–12 that is simultaneously mathematically correct and grade-level appropriate. The volumes are consistent with CCSSM (Common Core State Standards for Mathematics) and aim at presenting the mathematics of K–12 as a totally transparent subject. The first part of this volume is devoted to the study of standard algebra topics: quadratic functions, graphs of equations of degree 2 in two variables, polynomials, exponentials and logarithms, complex numbers and the fundamental theorem of algebra, and the binomial theorem. Having translations and the concept of similarity at our disposal enables us to clarify the study of quadratic functions by concentrating on their graphs, the same way the study of linear functions is greatly clarified by knowing that their graphs are lines. We also introduce the concept of formal algebra in the study of polynomials with complex coefficients. The last three chapters in this volume complete the systematic exposition of high school geometry that is consistent with CCSSM. These chapters treat the geometry of the triangle and the circle, ruler and compass constructions, and a general discussion of axiomatic systems, including non-Euclidean geometry and the celebrated work of Hilbert on the foundations. This book should be useful for current and future teachers of K–12 mathematics, as well as for some high school students and for education professionals.
Publisher: American Mathematical Soc.
ISBN: 1470456761
Category : Education
Languages : en
Pages : 417
Book Description
This is the second of three volumes that, together, give an exposition of the mathematics of grades 9–12 that is simultaneously mathematically correct and grade-level appropriate. The volumes are consistent with CCSSM (Common Core State Standards for Mathematics) and aim at presenting the mathematics of K–12 as a totally transparent subject. The first part of this volume is devoted to the study of standard algebra topics: quadratic functions, graphs of equations of degree 2 in two variables, polynomials, exponentials and logarithms, complex numbers and the fundamental theorem of algebra, and the binomial theorem. Having translations and the concept of similarity at our disposal enables us to clarify the study of quadratic functions by concentrating on their graphs, the same way the study of linear functions is greatly clarified by knowing that their graphs are lines. We also introduce the concept of formal algebra in the study of polynomials with complex coefficients. The last three chapters in this volume complete the systematic exposition of high school geometry that is consistent with CCSSM. These chapters treat the geometry of the triangle and the circle, ruler and compass constructions, and a general discussion of axiomatic systems, including non-Euclidean geometry and the celebrated work of Hilbert on the foundations. This book should be useful for current and future teachers of K–12 mathematics, as well as for some high school students and for education professionals.
Precalculus Mathematics in a Nutshell: Geometry, Algebra, Trigonometry
Author: George F. Simmons
Publisher: Wipf and Stock Publishers
ISBN: 1592441300
Category : Religion
Languages : en
Pages : 129
Book Description
ÒGeometry is a very beautiful subject whose qualities of elegance, order, and certainty have exerted a powerful attraction on the human mind for many centuries. . . Algebra's importance lies in the student's future. . . as essential preparation for the serious study of science, engineering, economics, or for more advanced types of mathematics. . . The primary importance of trigonometry is not in its applications to surveying and navigation, or in making computations about triangles, but rather in the mathematical description of vibrations, rotations, and periodic phenomena of all kinds, including light, sound, alternating currents, and the orbits of the planets around the sun.Ó In this brief, clearly written book, the essentials of geometry, algebra, and trigonometry are pulled together into three complementary and convenient small packages, providing an excellent preview and review for anyone who wishes to prepare to master calculus with a minimum of misunderstanding and wasted time and effort. Students and other readers will find here all they need to pull them through.
Publisher: Wipf and Stock Publishers
ISBN: 1592441300
Category : Religion
Languages : en
Pages : 129
Book Description
ÒGeometry is a very beautiful subject whose qualities of elegance, order, and certainty have exerted a powerful attraction on the human mind for many centuries. . . Algebra's importance lies in the student's future. . . as essential preparation for the serious study of science, engineering, economics, or for more advanced types of mathematics. . . The primary importance of trigonometry is not in its applications to surveying and navigation, or in making computations about triangles, but rather in the mathematical description of vibrations, rotations, and periodic phenomena of all kinds, including light, sound, alternating currents, and the orbits of the planets around the sun.Ó In this brief, clearly written book, the essentials of geometry, algebra, and trigonometry are pulled together into three complementary and convenient small packages, providing an excellent preview and review for anyone who wishes to prepare to master calculus with a minimum of misunderstanding and wasted time and effort. Students and other readers will find here all they need to pull them through.
Foundations of Mathematics
Author: Angela G. Shirley
Publisher: Independently Published
ISBN: 9781790836581
Category : Algebras, Linear
Languages : en
Pages : 198
Book Description
This volume, Introductory Linear Algebra & Analytical Geometry, introduces students to basic concepts in linear algebra and coordinate geometry - vectors, lines, planes in 3-dimensions, matrices, determinants and systems of linear equations. The emphasis on equipping the student with powerful tools of linear algebra while building a solid foundation on which to pursue further studies in Mathematics or Mathematics-related fields. Students will appreciate the detailed notes on each topic, the many worked examples, as well as the model solutions to exam questions.
Publisher: Independently Published
ISBN: 9781790836581
Category : Algebras, Linear
Languages : en
Pages : 198
Book Description
This volume, Introductory Linear Algebra & Analytical Geometry, introduces students to basic concepts in linear algebra and coordinate geometry - vectors, lines, planes in 3-dimensions, matrices, determinants and systems of linear equations. The emphasis on equipping the student with powerful tools of linear algebra while building a solid foundation on which to pursue further studies in Mathematics or Mathematics-related fields. Students will appreciate the detailed notes on each topic, the many worked examples, as well as the model solutions to exam questions.
Clifford Algebra to Geometric Calculus
Author: David Hestenes
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.