Author: Theodore D. Moyer
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 584
Book Description
A valuable reference for students and professionals in the field of deep space navigation Drawing on fundamental principles and practices developed during decades of deep space exploration at the California Institute of Technology’s Jet Propulsion Laboratory (JPL), this book documents the formation of program Regres of JPL’s Orbit Determination Program (ODP). Program Regres calculates the computed values of observed quantities (e.g., Doppler and range observables) obtained at the tracking stations of the Deep Space Network, and also calculates media corrections for the computed values of the observable and partial derivatives of the computed values of the observables with respect to the solve-for-parameter vector-q. The ODP or any other program which uses its formulation can be used to navigate a spacecraft anywhere in the solar system. A publication of the JPL Deep Space Communications and Navigation System Center of Excellence (DESCANSO), Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation is an invaluable resource for graduate students of celestial mechanics or astrodynamics because it: features the expertise of today’s top scientists places the entire program Regres formulation in an easy-to-access resource describes technology which will be used in the next generation of navigation software currently under development The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by conveying state-of-the-art knowledge in key technologies.
Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation
Author: Theodore D. Moyer
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 584
Book Description
A valuable reference for students and professionals in the field of deep space navigation Drawing on fundamental principles and practices developed during decades of deep space exploration at the California Institute of Technology’s Jet Propulsion Laboratory (JPL), this book documents the formation of program Regres of JPL’s Orbit Determination Program (ODP). Program Regres calculates the computed values of observed quantities (e.g., Doppler and range observables) obtained at the tracking stations of the Deep Space Network, and also calculates media corrections for the computed values of the observable and partial derivatives of the computed values of the observables with respect to the solve-for-parameter vector-q. The ODP or any other program which uses its formulation can be used to navigate a spacecraft anywhere in the solar system. A publication of the JPL Deep Space Communications and Navigation System Center of Excellence (DESCANSO), Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation is an invaluable resource for graduate students of celestial mechanics or astrodynamics because it: features the expertise of today’s top scientists places the entire program Regres formulation in an easy-to-access resource describes technology which will be used in the next generation of navigation software currently under development The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by conveying state-of-the-art knowledge in key technologies.
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 584
Book Description
A valuable reference for students and professionals in the field of deep space navigation Drawing on fundamental principles and practices developed during decades of deep space exploration at the California Institute of Technology’s Jet Propulsion Laboratory (JPL), this book documents the formation of program Regres of JPL’s Orbit Determination Program (ODP). Program Regres calculates the computed values of observed quantities (e.g., Doppler and range observables) obtained at the tracking stations of the Deep Space Network, and also calculates media corrections for the computed values of the observable and partial derivatives of the computed values of the observables with respect to the solve-for-parameter vector-q. The ODP or any other program which uses its formulation can be used to navigate a spacecraft anywhere in the solar system. A publication of the JPL Deep Space Communications and Navigation System Center of Excellence (DESCANSO), Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation is an invaluable resource for graduate students of celestial mechanics or astrodynamics because it: features the expertise of today’s top scientists places the entire program Regres formulation in an easy-to-access resource describes technology which will be used in the next generation of navigation software currently under development The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by conveying state-of-the-art knowledge in key technologies.
Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation
Author: Theodore D. Moyer
Publisher: John Wiley & Sons
ISBN: 0471726176
Category : Technology & Engineering
Languages : en
Pages : 573
Book Description
A valuable reference for students and professionals in the field of deep space navigation Drawing on fundamental principles and practices developed during decades of deep space exploration at the California Institute of Technology's Jet Propulsion Laboratory (JPL), this book documents the formation of program Regres of JPL's Orbit Determination Program (ODP). Program Regres calculates the computed values of observed quantities (e.g., Doppler and range observables) obtained at the tracking stations of the Deep Space Network, and also calculates media corrections for the computed values of the observable and partial derivatives of the computed values of the observables with respect to the solve-for-parameter vector-q. The ODP or any other program which uses its formulation can be used to navigate a spacecraft anywhere in the solar system. A publication of the JPL Deep Space Communications and Navigation System Center of Excellence (DESCANSO), Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation is an invaluable resource for graduate students of celestial mechanics or astrodynamics because it: * features the expertise of today's top scientists * places the entire program Regres formulation in an easy-to-access resource * describes technology which will be used in the next generation of navigation software currently under development The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by conveying state-of-the-art knowledge in key technologies.
Publisher: John Wiley & Sons
ISBN: 0471726176
Category : Technology & Engineering
Languages : en
Pages : 573
Book Description
A valuable reference for students and professionals in the field of deep space navigation Drawing on fundamental principles and practices developed during decades of deep space exploration at the California Institute of Technology's Jet Propulsion Laboratory (JPL), this book documents the formation of program Regres of JPL's Orbit Determination Program (ODP). Program Regres calculates the computed values of observed quantities (e.g., Doppler and range observables) obtained at the tracking stations of the Deep Space Network, and also calculates media corrections for the computed values of the observable and partial derivatives of the computed values of the observables with respect to the solve-for-parameter vector-q. The ODP or any other program which uses its formulation can be used to navigate a spacecraft anywhere in the solar system. A publication of the JPL Deep Space Communications and Navigation System Center of Excellence (DESCANSO), Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation is an invaluable resource for graduate students of celestial mechanics or astrodynamics because it: * features the expertise of today's top scientists * places the entire program Regres formulation in an easy-to-access resource * describes technology which will be used in the next generation of navigation software currently under development The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by conveying state-of-the-art knowledge in key technologies.
Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation
Author: Theodore D. Moyer
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages :
Book Description
Radiometric Tracking Techniques for Deep-Space Navigation
Author: Catherine L. Thornton
Publisher: John Wiley & Sons
ISBN: 0471726168
Category : Technology & Engineering
Languages : en
Pages : 99
Book Description
Radiometric Tracking Techniques for Deep-Space Navigation focuses on a broad array of technologies and concepts developed over the last four decades to support radio navigation on interplanetary spacecraft. In addition to an overview of Earth-based radio navigation techniques, the book includes a simplified conceptual presentation of each radiometric measurement type, its information content, and the expected measeurement accuracy. The methods described for both aquiring and calibrating radiometric measurements also provide a robust system to support guidance and navigation for future robotic space exploration.
Publisher: John Wiley & Sons
ISBN: 0471726168
Category : Technology & Engineering
Languages : en
Pages : 99
Book Description
Radiometric Tracking Techniques for Deep-Space Navigation focuses on a broad array of technologies and concepts developed over the last four decades to support radio navigation on interplanetary spacecraft. In addition to an overview of Earth-based radio navigation techniques, the book includes a simplified conceptual presentation of each radiometric measurement type, its information content, and the expected measeurement accuracy. The methods described for both aquiring and calibrating radiometric measurements also provide a robust system to support guidance and navigation for future robotic space exploration.
Large Antennas of the Deep Space Network
Author: William A. Imbriale
Publisher: John Wiley & Sons
ISBN: 0471726192
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
An important historical look at the space program's evolvingtelecommunications systems Large Antennas of the Deep Space Network traces the development ofthe antennas of NASA's Deep Space Network (DSN) from the network'sinception in 1958 to the present. It details the evolution of thelarge parabolic dish antennas, from the initial 26-m operation atL-band (960 MHz) through the current Ka-band (32 GHz) systems.Primarily used for telecommunications, these antennas also supportradar and radio astronomy observations in the exploration of thesolar system and the universe. In addition, the author also offersthorough treatment of the analytical and measurement techniquesused in design and performance assessment. Large Antennas of the Deep Space Network represents a vitaladdition to the literature in that it includes NASA-funded researchthat significantly impacts on deep space telecommunications. Partof the prestigious JPL Deep Space Communications and NavigationSeries, it captures fundamental principles and practices developedduring decades of deep space exploration, providing informationthat will enable antenna professionals to replicate radiofrequencies and optics designs. Designed as an introduction for students in the field as well as areference for advanced practitioners, the text assumes a basicfamiliarity with engineering and mathematical concepts andtechnical terms. The Deep Space Communications and Navigation Series is authored byscientists and engineers with extensive experience in astronautics,communications, and related fields. It lays the foundation forinnovation in the areas of deep space navigation and communicationsby disseminating state-of-the-art knowledge in key technologies.
Publisher: John Wiley & Sons
ISBN: 0471726192
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
An important historical look at the space program's evolvingtelecommunications systems Large Antennas of the Deep Space Network traces the development ofthe antennas of NASA's Deep Space Network (DSN) from the network'sinception in 1958 to the present. It details the evolution of thelarge parabolic dish antennas, from the initial 26-m operation atL-band (960 MHz) through the current Ka-band (32 GHz) systems.Primarily used for telecommunications, these antennas also supportradar and radio astronomy observations in the exploration of thesolar system and the universe. In addition, the author also offersthorough treatment of the analytical and measurement techniquesused in design and performance assessment. Large Antennas of the Deep Space Network represents a vitaladdition to the literature in that it includes NASA-funded researchthat significantly impacts on deep space telecommunications. Partof the prestigious JPL Deep Space Communications and NavigationSeries, it captures fundamental principles and practices developedduring decades of deep space exploration, providing informationthat will enable antenna professionals to replicate radiofrequencies and optics designs. Designed as an introduction for students in the field as well as areference for advanced practitioners, the text assumes a basicfamiliarity with engineering and mathematical concepts andtechnical terms. The Deep Space Communications and Navigation Series is authored byscientists and engineers with extensive experience in astronautics,communications, and related fields. It lays the foundation forinnovation in the areas of deep space navigation and communicationsby disseminating state-of-the-art knowledge in key technologies.
Bandwidth-Efficient Digital Modulation with Application to Deep Space Communications
Author: Marvin K. Simon
Publisher: John Wiley & Sons
ISBN: 0471726184
Category : Technology & Engineering
Languages : en
Pages : 244
Book Description
An important look at bandwidth-efficient modulations with applications to today's Space program Based on research and results obtained at the California Institute of Technology's Jet Propulsion Laboratory, this timely book defines, describes, and then delineates the performance (power and bandwidth) of digital communication systems that incorporate a wide variety of bandwidth-efficient modulations appropriate for the design and implementation of space communications systems. The author compares the performance of these systems in the presence of a number of practical (non-ideal) transmitter and receiver characteristics such as modulator and phase imbalance, imperfect carrier synchronization, and transmitter nonlinearity. Although the material focuses on the deep space applications developed at the Jet Propulsion Laboratory, the presentation is sufficiently broad as to be applicable to a host of other applications dealing with RF communications. An important contribution to the scientific literature, Bandwidth-Efficient Digital Modulation with Application to Deep Space Communications * was commissioned by the JPL Deep Space Communications and Navigation System Center of Excellence * highlights many NASA-funded technical contributions pertaining to deep space communications systems * is a part of the prestigious Deep Space Communications and Navigation Series The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.
Publisher: John Wiley & Sons
ISBN: 0471726184
Category : Technology & Engineering
Languages : en
Pages : 244
Book Description
An important look at bandwidth-efficient modulations with applications to today's Space program Based on research and results obtained at the California Institute of Technology's Jet Propulsion Laboratory, this timely book defines, describes, and then delineates the performance (power and bandwidth) of digital communication systems that incorporate a wide variety of bandwidth-efficient modulations appropriate for the design and implementation of space communications systems. The author compares the performance of these systems in the presence of a number of practical (non-ideal) transmitter and receiver characteristics such as modulator and phase imbalance, imperfect carrier synchronization, and transmitter nonlinearity. Although the material focuses on the deep space applications developed at the Jet Propulsion Laboratory, the presentation is sufficiently broad as to be applicable to a host of other applications dealing with RF communications. An important contribution to the scientific literature, Bandwidth-Efficient Digital Modulation with Application to Deep Space Communications * was commissioned by the JPL Deep Space Communications and Navigation System Center of Excellence * highlights many NASA-funded technical contributions pertaining to deep space communications systems * is a part of the prestigious Deep Space Communications and Navigation Series The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.
Antenna Arraying Techniques in the Deep Space Network
Author: David H. Rogstad
Publisher: John Wiley & Sons
ISBN: 0471721301
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
An introduction to antenna Arraying in the Deep Space network Antenna arraying is the combining of the output from several antennas in order to improve the signal-to-noise ratio (SNR) of the received signal. Now implemented at the Goldstone Complex and other Deep Space Network (DSN) overseas facilities, antenna arraying provides flexible use of multiple antennas to increase data rates and has enabled NASA's DSN to extend the missions of some spacecraft beyond their planned lifetimes. Antenna Arraying Techniques in the Deep Space Network introduces the development and use of antenna arraying as it is implemented in the DSN. Drawing on the work of scientists at JPL, this timely volume summarizes the development of antenna arraying and its historical background; describes key concepts and techniques; analyzes and compares several methods of arraying; discusses several correlation techniques used for obtaining the combined weights; presents the results of several arraying experiments; and suggests directions for future work. An important contribution to the scientific literature, Antenna Arraying Techniques in the Deep Space Network * Was commissioned by the JPL Deep Space Communications and Navigation Systems (DESCANSO) Center of Excellence * Highlights many NASA-funded technical contributions pertaining to deep space communications systems * Is a part of the prestigious JPL Deep Space Communications and Navigation Series The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.
Publisher: John Wiley & Sons
ISBN: 0471721301
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
An introduction to antenna Arraying in the Deep Space network Antenna arraying is the combining of the output from several antennas in order to improve the signal-to-noise ratio (SNR) of the received signal. Now implemented at the Goldstone Complex and other Deep Space Network (DSN) overseas facilities, antenna arraying provides flexible use of multiple antennas to increase data rates and has enabled NASA's DSN to extend the missions of some spacecraft beyond their planned lifetimes. Antenna Arraying Techniques in the Deep Space Network introduces the development and use of antenna arraying as it is implemented in the DSN. Drawing on the work of scientists at JPL, this timely volume summarizes the development of antenna arraying and its historical background; describes key concepts and techniques; analyzes and compares several methods of arraying; discusses several correlation techniques used for obtaining the combined weights; presents the results of several arraying experiments; and suggests directions for future work. An important contribution to the scientific literature, Antenna Arraying Techniques in the Deep Space Network * Was commissioned by the JPL Deep Space Communications and Navigation Systems (DESCANSO) Center of Excellence * Highlights many NASA-funded technical contributions pertaining to deep space communications systems * Is a part of the prestigious JPL Deep Space Communications and Navigation Series The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.
Deep Space Telecommunications Systems Engineering
Author: Joseph H. Yuen
Publisher: Springer Science & Business Media
ISBN: 1475749236
Category : Technology & Engineering
Languages : en
Pages : 615
Book Description
The challenge of communication in planetary exploration has been unusual. The guidance and control of spacecraft depend on reliable communication. Scientific data returned to earth are irreplaceable, or replaceable only at the cost of another mission. In deep space, communications propagation is good, relative to terrestrial communications, and there is an opportunity to press toward the mathematical limit of microwave communication. Yet the limits must be approached warily, with reliability as well as channel capacity in mind. Further, the effects of small changes in the earth's atmosphere and the interplanetary plasma have small but important effects on propagation time and hence on the measurement of distance. Advances are almost incredible. Communication capability measured in 18 bits per second at a given range rose by a factor of 10 in the 19 years from Explorer I of 1958 to Voyager of 1977. This improvement was attained through ingenious design based on the sort of penetrating analysis set forth in this book by engineers who took part in a highly detailed and amazingly successful pro gram. Careful observation and analysis have told us much about limitations on the accurate measurement of distance. It is not easy to get busy people to tell others clearly and in detail how they have solved important problems. Joseph H. Yuen and the other contribu tors to this book are to be commended for the time and care they have devoted to explicating one vital aspect of a great adventure of mankind.
Publisher: Springer Science & Business Media
ISBN: 1475749236
Category : Technology & Engineering
Languages : en
Pages : 615
Book Description
The challenge of communication in planetary exploration has been unusual. The guidance and control of spacecraft depend on reliable communication. Scientific data returned to earth are irreplaceable, or replaceable only at the cost of another mission. In deep space, communications propagation is good, relative to terrestrial communications, and there is an opportunity to press toward the mathematical limit of microwave communication. Yet the limits must be approached warily, with reliability as well as channel capacity in mind. Further, the effects of small changes in the earth's atmosphere and the interplanetary plasma have small but important effects on propagation time and hence on the measurement of distance. Advances are almost incredible. Communication capability measured in 18 bits per second at a given range rose by a factor of 10 in the 19 years from Explorer I of 1958 to Voyager of 1977. This improvement was attained through ingenious design based on the sort of penetrating analysis set forth in this book by engineers who took part in a highly detailed and amazingly successful pro gram. Careful observation and analysis have told us much about limitations on the accurate measurement of distance. It is not easy to get busy people to tell others clearly and in detail how they have solved important problems. Joseph H. Yuen and the other contribu tors to this book are to be commended for the time and care they have devoted to explicating one vital aspect of a great adventure of mankind.
Low-Noise Systems in the Deep Space Network
Author: Macgregor S. Reid
Publisher: Wiley-Blackwell
ISBN:
Category : Nature
Languages : en
Pages : 432
Book Description
The book explores the low-noise microwave systems that form the front end of all DSN ground receiving stations. It explains why the front end of each antenna is key to establishing the sensivity, polarization, frequency diversity, and capabilities of the receiving chain and, therefore, the entire ground station.
Publisher: Wiley-Blackwell
ISBN:
Category : Nature
Languages : en
Pages : 432
Book Description
The book explores the low-noise microwave systems that form the front end of all DSN ground receiving stations. It explains why the front end of each antenna is key to establishing the sensivity, polarization, frequency diversity, and capabilities of the receiving chain and, therefore, the entire ground station.
Spacecraft Optical Navigation
Author: William M. Owen, Jr.
Publisher: John Wiley & Sons
ISBN: 1119904455
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
UNIQUE RESOURCE EXPLORING HOW SPACECRAFT IMAGERY PROVIDES PROFESSIONALS WITH ACCURATE ESTIMATES OF SPACECRAFT TRAJECTORY, WITH REAL-WORLD EXAMPLES AND DETAILED ILLUSTRATIONS Spacecraft Optical Navigation provides detailed information on the planning and analysis of spacecraft imagery to help determine the trajectory of a spacecraft. The author, an experienced engineer within the field, addresses the entirety of celestial targets and explains how a spacecraft captures their imagery. Aimed at professionals within spacecraft navigation, this book provides an extensive introduction and explains the history of optical navigation, reviewing a range of optical methods and presents real world examples throughout. With the use of mathematics, this book discusses everything from the orbits, sizes, and shapes of the bodies being imaged, to the location and properties of salient features on their surfaces. Specific sample topics covered in Spacecraft Optical Navigation include: History of various past spacecraft, including Mariner and Viking, Voyager, Galileo, NEAR Shoemaker, and Cassini, and flight hardware, star catalogs, and stereophotoclinometry Cameras, covering the gnomonic projection (and deviations from it), creation of a digital picture, picture flattening, and readout smears Modeling optical navigation observables, covering apparent directions to an object, star, and limbs or terminators, and orientation of cameras Obtaining optical navigation observables, covering centerfinding for stars and resolved and unresolved bodies, and using opnav data in orbit determination Spacecraft Optical Navigation is an ideal resource for engineers working in spacecraft navigation and optical navigation, to update their knowledge of the technology and use it in their day-to-day. The text will also benefit researchers working with spacecraft, particularly in navigation, and professors and lecturers teaching graduate aerospace courses.
Publisher: John Wiley & Sons
ISBN: 1119904455
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
UNIQUE RESOURCE EXPLORING HOW SPACECRAFT IMAGERY PROVIDES PROFESSIONALS WITH ACCURATE ESTIMATES OF SPACECRAFT TRAJECTORY, WITH REAL-WORLD EXAMPLES AND DETAILED ILLUSTRATIONS Spacecraft Optical Navigation provides detailed information on the planning and analysis of spacecraft imagery to help determine the trajectory of a spacecraft. The author, an experienced engineer within the field, addresses the entirety of celestial targets and explains how a spacecraft captures their imagery. Aimed at professionals within spacecraft navigation, this book provides an extensive introduction and explains the history of optical navigation, reviewing a range of optical methods and presents real world examples throughout. With the use of mathematics, this book discusses everything from the orbits, sizes, and shapes of the bodies being imaged, to the location and properties of salient features on their surfaces. Specific sample topics covered in Spacecraft Optical Navigation include: History of various past spacecraft, including Mariner and Viking, Voyager, Galileo, NEAR Shoemaker, and Cassini, and flight hardware, star catalogs, and stereophotoclinometry Cameras, covering the gnomonic projection (and deviations from it), creation of a digital picture, picture flattening, and readout smears Modeling optical navigation observables, covering apparent directions to an object, star, and limbs or terminators, and orientation of cameras Obtaining optical navigation observables, covering centerfinding for stars and resolved and unresolved bodies, and using opnav data in orbit determination Spacecraft Optical Navigation is an ideal resource for engineers working in spacecraft navigation and optical navigation, to update their knowledge of the technology and use it in their day-to-day. The text will also benefit researchers working with spacecraft, particularly in navigation, and professors and lecturers teaching graduate aerospace courses.