Formation Control of Mobile Robots and Unmanned Aerial Vehicles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Formation Control of Mobile Robots and Unmanned Aerial Vehicles PDF full book. Access full book title Formation Control of Mobile Robots and Unmanned Aerial Vehicles by Travis Alan Dierks. Download full books in PDF and EPUB format.

Formation Control of Mobile Robots and Unmanned Aerial Vehicles

Formation Control of Mobile Robots and Unmanned Aerial Vehicles PDF Author: Travis Alan Dierks
Publisher:
ISBN:
Category : Lyapunov stability
Languages : en
Pages : 0

Book Description
"In this dissertation, the nonlinear control of nonholonomic mobile robot formations and unmanned aerial vehicle (UAV) formations is undertaken and presented in six papers. In the first paper, an asymptotically stable combined kinematic/torque control law is developed for leader-follower based formation control of mobile robots using backstepping. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. Subsequently, in the second paper, a novel NN observer is designed to estimate the linear and angular velocities of both the follower and its leader robot and a NN output feedback control law is developed. On the other hand, in the third paper, a NN-based output feedback control law is presented for the control of an underactuated quad rotor UAV, and a NN virtual control input scheme is proposed which allows all six degrees of freedom to be controlled using only four control inputs. The results of this paper are extended to include the control of quadrotor UAV formations, and a novel three-dimensional leader-follower framework is proposed in the fourth paper. Next, in the fifth paper, the discrete-time nonlinear optimal control is undertaken using two online approximators (OLA's) to solve the infinite horizon Hamilton-Jacobi-Bellman (HJB) equation forward-in-time to achieve nearly optimal regulation and tracking control. In contrast, paper six utilizes a single OLA to solve the infinite horizon HJB and Hamilton-Jacobi-Isaacs (HJI) equations forward-intime for the near optimal regulation and tracking control of continuous affine nonlinear systems. The effectiveness of the optimal tracking controllers proposed in the fifth and sixth papers are then demonstrated using nonholonomic mobile robot formation control"--Abstract, leaf iv

Formation Control of Mobile Robots and Unmanned Aerial Vehicles

Formation Control of Mobile Robots and Unmanned Aerial Vehicles PDF Author: Travis Alan Dierks
Publisher:
ISBN:
Category : Lyapunov stability
Languages : en
Pages : 0

Book Description
"In this dissertation, the nonlinear control of nonholonomic mobile robot formations and unmanned aerial vehicle (UAV) formations is undertaken and presented in six papers. In the first paper, an asymptotically stable combined kinematic/torque control law is developed for leader-follower based formation control of mobile robots using backstepping. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. Subsequently, in the second paper, a novel NN observer is designed to estimate the linear and angular velocities of both the follower and its leader robot and a NN output feedback control law is developed. On the other hand, in the third paper, a NN-based output feedback control law is presented for the control of an underactuated quad rotor UAV, and a NN virtual control input scheme is proposed which allows all six degrees of freedom to be controlled using only four control inputs. The results of this paper are extended to include the control of quadrotor UAV formations, and a novel three-dimensional leader-follower framework is proposed in the fourth paper. Next, in the fifth paper, the discrete-time nonlinear optimal control is undertaken using two online approximators (OLA's) to solve the infinite horizon Hamilton-Jacobi-Bellman (HJB) equation forward-in-time to achieve nearly optimal regulation and tracking control. In contrast, paper six utilizes a single OLA to solve the infinite horizon HJB and Hamilton-Jacobi-Isaacs (HJI) equations forward-intime for the near optimal regulation and tracking control of continuous affine nonlinear systems. The effectiveness of the optimal tracking controllers proposed in the fifth and sixth papers are then demonstrated using nonholonomic mobile robot formation control"--Abstract, leaf iv

Mobile Robots for Dynamic Environments

Mobile Robots for Dynamic Environments PDF Author: Marco Ceccarelli
Publisher: Momentum Press
ISBN: 1606508229
Category : Technology & Engineering
Languages : en
Pages : 184

Book Description
For several decades now, mobile robots have been integral to the development of new robotic systems for new applications, even in nontechnical areas. Mobile robots have already been developed for such uses as industrial automation, medical care, space exploration, demining operations, surveillance, entertainment, museum guides and many other industrial and non-industrial applications. In some cases these products are readily available on the market. A considerable amount of literature is also available; not all of which pertains to technical issues, as listed in the chapters of this book and its companion. Readers will enjoy this book and its companion and will utilize the knowledge gained with satisfaction and will be assisted by its content in their interdisciplinary work for engineering developments of mobile robots, in both old and new applications. This book and its companion can be used as a graduate level course book or a guide book for the practicing engineer who is working on a specific problem which is described in one of the chapters. The companion volume for this book, Designs and Prototypes of Mobile Robots, is also available from Momentum Press.

Autonomous Control Systems and Vehicles

Autonomous Control Systems and Vehicles PDF Author: Kenzo Nonami
Publisher: Springer Science & Business Media
ISBN: 4431542760
Category : Technology & Engineering
Languages : en
Pages : 306

Book Description
The International Conference on Intelligent Unmanned Systems 2011 was organized by the International Society of Intelligent Unmanned Systems and locally by the Center for Bio-Micro Robotics Research at Chiba University, Japan. The event was the 7th conference continuing from previous conferences held in Seoul, Korea (2005, 2006), Bali, Indonesia (2007), Nanjing, China (2008), Jeju, Korea (2009), and Bali, Indonesia (2010). ICIUS 2011 focused on both theory and application, primarily covering the topics of robotics, autonomous vehicles, intelligent unmanned technologies, and biomimetics. We invited seven keynote speakers who dealt with related state-of-the-art technologies including unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs), flapping wings (FWs), unmanned ground vehicles (UGVs), underwater vehicles (UVs), bio-inspired robotics, advanced control, and intelligent systems, among others. This book is a collection of excellent papers that were updated after presentation at ICIUS2011. All papers that form the chapters of this book were reviewed and revised from the perspective of advanced relevant technologies in the field. The aim of this book is to stimulate interactions among researchers active in the areas pertinent to intelligent unmanned systems.

Control of Multiple Robots Using Vision Sensors

Control of Multiple Robots Using Vision Sensors PDF Author: Miguel Aranda
Publisher: Springer
ISBN: 3319578286
Category : Technology & Engineering
Languages : en
Pages : 197

Book Description
This monograph introduces novel methods for the control and navigation of mobile robots using multiple-1-d-view models obtained from omni-directional cameras. This approach overcomes field-of-view and robustness limitations, simultaneously enhancing accuracy and simplifying application on real platforms. The authors also address coordinated motion tasks for multiple robots, exploring different system architectures, particularly the use of multiple aerial cameras in driving robot formations on the ground. Again, this has benefits of simplicity, scalability and flexibility. Coverage includes details of: a method for visual robot homing based on a memory of omni-directional images; a novel vision-based pose stabilization methodology for non-holonomic ground robots based on sinusoidal-varying control inputs; an algorithm to recover a generic motion between two 1-d views and which does not require a third view; a novel multi-robot setup where multiple camera-carrying unmanned aerial vehicles are used to observe and control a formation of ground mobile robots; and three coordinate-free methods for decentralized mobile robot formation stabilization. The performance of the different methods is evaluated both in simulation and experimentally with real robotic platforms and vision sensors. Control of Multiple Robots Using Vision Sensors will serve both academic researchers studying visual control of single and multiple robots and robotics engineers seeking to design control systems based on visual sensors.

A Closer Look at Formation Control

A Closer Look at Formation Control PDF Author: Dianwei Qian
Publisher:
ISBN: 9781536182651
Category : Technology & Engineering
Languages : en
Pages : 224

Book Description
"Formation control is one of the most challenging problems in cooperative multi-robots. It is defined as a coordination of a group of robots to get into and to maintain a formation with a certain shape. The formation control problem has drawn significant attention for many years, and now it is well understood and tends to be mature. This control problem is originated from biological inspires such as flocking and schooling. Its classification includes formation shape generation, formation reconfiguration and selection, formation tracking, and role assignment in formation. It also has potential applications in search and rescue missions, forest fire detection and surveillance, etc. It can be extended to many real world systems, autonomous robots, such as underwater vehicles, unmanned aerial vehicles, mobile sensor networks, rectangular agents, nonholonomic mobile robots, to name but a few. Apparently, the book cannot include all research topics. The editor and the authors wish that it could reveal some tendencies on this research field and benefit readers. In this book, different aspects of formation control are explored. Chapters includes some new tendencies and developments in research on several formation methods of multi-robot systems, that is, the 1st-order sliding mode control, the 2nd-order sliding mode control, the integral sliding mode control, the terminal sliding mode control, the sliding model control of multi-agents and the fuzzy-based formation control of multiple quadrotor systems"--

Formation Control

Formation Control PDF Author: Hyo-Sung Ahn
Publisher: Springer
ISBN: 3030151875
Category : Technology & Engineering
Languages : en
Pages : 360

Book Description
This monograph introduces recent developments in formation control of distributed-agent systems. Eschewing the traditional concern with the dynamic characteristics of individual agents, the book proposes a treatment that studies the formation control problem in terms of interactions among agents including factors such as sensing topology, communication and actuation topologies, and computations. Keeping pace with recent technological advancements in control, communications, sensing and computation that have begun to bring the applications of distributed-systems theory out of the industrial sphere and into that of day-to-day life, this monograph provides distributed control algorithms for a group of agents that may behave together. Unlike traditional control laws that usually require measurements with respect to a global coordinate frame and communications between a centralized operation center and agents, this book provides control laws that require only relative measurements and communications between agents without interaction with a centralized operator. Since the control algorithms presented in this book do not require any global sensing and any information exchanges with a centralized operation center, they can be realized in a fully distributed way, which significantly reduces the operation and implementation costs of a group of agents. Formation Control will give both students and researchers interested in pursuing this field a good grounding on which to base their work.

Flight Formation Control

Flight Formation Control PDF Author: Josep M. Guerrero
Publisher: John Wiley & Sons
ISBN: 1118563220
Category : Technology & Engineering
Languages : en
Pages : 279

Book Description
In the last decade the development and control of Unmanned Aerial Vehicles (UAVs) has attracted a lot of interest. Both researchers and companies have a growing interest in improving this type of vehicle given their many civilian and military applications. This book presents the state of the art in the area of UAV Flight Formation. The coordination and robust consensus approaches are presented in detail as well as formation flight control strategies which are validated in experimental platforms. It aims at helping students and academics alike to better understand what coordination and flight formation control can make possible. Several novel methods are presented: - controllability and observability of multi-agent systems; - robust consensus; - flight formation control; - stability of formations over noisy networks; which generate solutions of guaranteed performance for UAV Flight Formation. Contents 1. Introduction, J.A. Guerrero. 2. Theoretical Preliminaries, J.A. Guerrero. 3. Multiagent Coordination Strategies, J.A. Guerrero, R. Lozano, M.W. Spong, N. Chopra. 4. Robust Control Design for Multiagent Systems with Parametric Uncertainty, J.A. Guerrero, G. Romero. 5. On Adaptive and Robust Controlled Synchronization of Networked Robotic Systems on Strongly Connected Graphs, Y.-C. Liu, N. Chopra. 6. Modeling and Control of Mini UAV, G. Flores Colunga, J.A. Guerrero, J. Escareño, R. Lozano. 7. Flight Formation Control Strategies for Mini UAVs, J.A. Guerrero. 8. Formation Based on Potential Functions, L. García, A. Dzul. 9. Quadrotor Vision-Based Control, J.E. Gomez-Balderas, J.A. Guerrero, S. SALAZAR, R. Lozano, P. Castillo. 10. Toward Vision-Based Coordination of Quadrotor Platoons, L.R. García Carrillo, J.A. Guerrero, R. Lozano. 11. Optimal Guidance for Rotorcraft Platoon Formation Flying in Wind Fields, J.A. Guerrero, Y. Bestaoui, R. Lozano. 12. Impact of Wireless Medium Access Protocol on the Quadrotor Formation Control, J.A. Guerrero, Y. Challal, P. Castillo. 13. MAC Protocol for Wireless Communications, A. Mendez, M. Panduro, O. Elizarraras, D. Covarrubias. 14. Optimization of a Scannable Pattern for Bidimensional Antenna Arrays to Provide Maximum Performance, A. Reyna, M.A. Panduro, A. Mendez.

Adaptive Consensus Based Formation Control of Unmanned Vehicles

Adaptive Consensus Based Formation Control of Unmanned Vehicles PDF Author: Haci Mehmet Guzey
Publisher:
ISBN:
Category : Drone aircraft
Languages : en
Pages : 218

Book Description
"Over the past decade, the control research community has given significant attention to formation control of multiple unmanned vehicles due to a variety of commercial and defense applications. Consensus-based formation control is considered to be more robust and reliable when compared to other formation control methods due to scalability and inherent properties that enable the formation to continue even if one of the vehicles experiences a failure. In contrast to existing methods on formation control where the dynamics of the vehicles are neglected, this dissertation in the form of four papers presents consensus-based formation control of unmanned vehicles-both ground and aerial, by incorporating the vehicle dynamics. First, neural networks (NN)-based optimal adaptive consensus-based formation control over finite horizon is presented for networked mobile robots or agents in the presence of uncertain robot/agent dynamics and communication. In the second paper, a hybrid automaton is proposed to control the nonholonomic mobile robots in two discrete modes: a regulation mode and a formation keeping mode in order to overcome well-known stabilization problem. The third paper presents the design of a distributed consensus-based event-triggered formation control of networked mobile robots using NN in the presence of uncertain robot dynamics to minimize communication. All these papers assume state availability. Finally, the fourth paper extends the consensus effort by introducing the development of a novel nonlinear output feedback NN-based controller for a group of quadrotor UAVs"--Abstract, page iv.

Robust Formation Control for Multiple Unmanned Aerial Vehicles

Robust Formation Control for Multiple Unmanned Aerial Vehicles PDF Author: Hao Liu
Publisher: CRC Press
ISBN: 1000788504
Category : Technology & Engineering
Languages : en
Pages : 145

Book Description
This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.

Motion Coordination for VTOL Unmanned Aerial Vehicles

Motion Coordination for VTOL Unmanned Aerial Vehicles PDF Author: Abdelkader Abdessameud
Publisher: Springer
ISBN: 9781447160595
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems’ inputs, states measurements, and restrictions on the interconnection topology between the aerial vehicles in the team are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers and industrial engineers from robotics, control engineering and aerospace communities. It also serves as a complementary reading for graduate students involved in research related to flying robotics, aerospace, control of under-actuated systems, and nonlinear control theory