Formal Geometry and Bordism Operations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Formal Geometry and Bordism Operations PDF full book. Access full book title Formal Geometry and Bordism Operations by Eric Peterson. Download full books in PDF and EPUB format.

Formal Geometry and Bordism Operations

Formal Geometry and Bordism Operations PDF Author: Eric Peterson
Publisher: Cambridge University Press
ISBN: 1108428037
Category : Mathematics
Languages : en
Pages : 421

Book Description
Delivers a broad, conceptual introduction to chromatic homotopy theory, focusing on contact with arithmetic and algebraic geometry.

Formal Geometry and Bordism Operations

Formal Geometry and Bordism Operations PDF Author: Eric Peterson
Publisher: Cambridge University Press
ISBN: 1108428037
Category : Mathematics
Languages : en
Pages : 421

Book Description
Delivers a broad, conceptual introduction to chromatic homotopy theory, focusing on contact with arithmetic and algebraic geometry.

Complex Cobordism and Stable Homotopy Groups of Spheres

Complex Cobordism and Stable Homotopy Groups of Spheres PDF Author: Douglas C. Ravenel
Publisher: American Mathematical Soc.
ISBN: 082182967X
Category : Mathematics
Languages : en
Pages : 418

Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.

Handbook of Homotopy Theory

Handbook of Homotopy Theory PDF Author: Haynes Miller
Publisher: CRC Press
ISBN: 1351251619
Category : Mathematics
Languages : en
Pages : 982

Book Description
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.

Algebraic and Geometric Surgery

Algebraic and Geometric Surgery PDF Author: Andrew Ranicki
Publisher: Oxford University Press
ISBN: 9780198509240
Category : Mathematics
Languages : en
Pages : 396

Book Description
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.

Topology, Geometry, and Dynamics: V. A. Rokhlin-Memorial

Topology, Geometry, and Dynamics: V. A. Rokhlin-Memorial PDF Author: Anatoly M. Vershik
Publisher: American Mathematical Soc.
ISBN: 1470456648
Category : Education
Languages : en
Pages : 345

Book Description
Vladimir Abramovich Rokhlin (8/23/1919–12/03/1984) was one of the leading Russian mathematicians of the second part of the twentieth century. His main achievements were in algebraic topology, real algebraic geometry, and ergodic theory. The volume contains the proceedings of the Conference on Topology, Geometry, and Dynamics: V. A. Rokhlin-100, held from August 19–23, 2019, at The Euler International Mathematics Institute and the Steklov Institute of Mathematics, St. Petersburg, Russia. The articles deal with topology of manifolds, theory of cobordisms, knot theory, geometry of real algebraic manifolds and dynamical systems and related topics. The book also contains Rokhlin's biography supplemented with copies of actual very interesting documents.

On Thom Spectra, Orientability, and Cobordism

On Thom Spectra, Orientability, and Cobordism PDF Author: Yu. B. Rudyak
Publisher: Springer Science & Business Media
ISBN: 3540777512
Category : Mathematics
Languages : en
Pages : 593

Book Description
Rudyak’s groundbreaking monograph is the first guide on the subject of cobordism since Stong's influential notes of a generation ago. It concentrates on Thom spaces (spectra), orientability theory and (co)bordism theory (including (co)bordism with singularities and, in particular, Morava K-theories). These are all framed by (co)homology theories and spectra. The author has also performed a service to the history of science in this book, giving detailed attributions.

Topological Library - Part 1: Cobordisms And Their Applications

Topological Library - Part 1: Cobordisms And Their Applications PDF Author: Serguei Petrovich Novikov
Publisher: World Scientific
ISBN: 9814475955
Category : Mathematics
Languages : en
Pages : 386

Book Description
This is the first of three volumes collecting the original and now classic works in topology written in the 50s-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950, that is, from Serre's celebrated “Singular homologies of fibre spaces.”This is the translation of the Russian edition published in 2005 with one entry (Milnor's lectures on the h-cobordism) omitted.

Bordism, Stable Homotopy and Adams Spectral Sequences

Bordism, Stable Homotopy and Adams Spectral Sequences PDF Author: Stanley O. Kochman
Publisher: American Mathematical Soc.
ISBN: 9780821806005
Category : Mathematics
Languages : en
Pages : 294

Book Description
This book is a compilation of lecture notes that were prepared for the graduate course ``Adams Spectral Sequences and Stable Homotopy Theory'' given at The Fields Institute during the fall of 1995. The aim of this volume is to prepare students with a knowledge of elementary algebraic topology to study recent developments in stable homotopy theory, such as the nilpotence and periodicity theorems. Suitable as a text for an intermediate course in algebraic topology, this book provides a direct exposition of the basic concepts of bordism, characteristic classes, Adams spectral sequences, Brown-Peterson spectra and the computation of stable stems. The key ideas are presented in complete detail without becoming encyclopedic. The approach to characteristic classes and some of the methods for computing stable stems have not been published previously. All results are proved in complete detail. Only elementary facts from algebraic topology and homological algebra are assumed. Each chapter concludes with a guide for further study.

Brown-Peterson Homology: An Introduction and Sampler

Brown-Peterson Homology: An Introduction and Sampler PDF Author: W. Stephen Wilson
Publisher: American Mathematical Soc.
ISBN: 0821816993
Category : Mathematics
Languages : en
Pages : 94

Book Description
Presents discussion of formal groups and an introduction to BP-homology. This book features a section on unstable operations. It is suitable for graduate students and algebraic topologists.

Nilpotence and Periodicity in Stable Homotopy Theory

Nilpotence and Periodicity in Stable Homotopy Theory PDF Author: Douglas C. Ravenel
Publisher: Princeton University Press
ISBN: 9780691025728
Category : Mathematics
Languages : en
Pages : 228

Book Description
Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.