Author: Dmitry L. Grodnitsky
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 288
Book Description
In Form and Function of Insect Wings Grodnitsky offers a comprehensive overview of the functional morphology of insect wings from the viewpoint of general biology and uses these data to help further explain animal morphology. Grodnitsky evaluates functional issues relating to insect diversification, particularly wing structure and kinematics. He discusses recent data on wing kinematics and structure from the point of view of modern insect flight aerodynamics and general evolutionary morphology. He is most concerned with the question of which features of an organism can be explained by natural selection of given functional variants and which cannot.
Form and Function of Insect Wings
Author: Dmitry L. Grodnitsky
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 288
Book Description
In Form and Function of Insect Wings Grodnitsky offers a comprehensive overview of the functional morphology of insect wings from the viewpoint of general biology and uses these data to help further explain animal morphology. Grodnitsky evaluates functional issues relating to insect diversification, particularly wing structure and kinematics. He discusses recent data on wing kinematics and structure from the point of view of modern insect flight aerodynamics and general evolutionary morphology. He is most concerned with the question of which features of an organism can be explained by natural selection of given functional variants and which cannot.
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 288
Book Description
In Form and Function of Insect Wings Grodnitsky offers a comprehensive overview of the functional morphology of insect wings from the viewpoint of general biology and uses these data to help further explain animal morphology. Grodnitsky evaluates functional issues relating to insect diversification, particularly wing structure and kinematics. He discusses recent data on wing kinematics and structure from the point of view of modern insect flight aerodynamics and general evolutionary morphology. He is most concerned with the question of which features of an organism can be explained by natural selection of given functional variants and which cannot.
How Insects Work
Author: Marianne Taylor
Publisher: The Experiment
ISBN: 1615196498
Category : Nature
Languages : en
Pages : 226
Book Description
The extraordinary inner-workings of the world’s amazing, adaptable insects A tiny textbook to learn on your own How Insects Work goes beyond the typical field guide to show us not only what insects look like but why. Arguably the most successful land animals—still going strong after five mass extinctions—insects have evolved a spectacular array of real-life superpowers to help them thrive in virtually every environment: Bumblebees’ wingbeats leave a faint electrical signal at each flower they visit to show that the nectar’s already been taken (see page 57), and houseflies defy gravity with tiny leg hairs that stick to the smoothest wall or ceiling (see page 69). In this in-depth, photo-filled handbook, discover the ways insects are even more astounding than you know—inside and out: Evolution Exoskeleton and Body Segments Senses Circulation Digestion Respiration Reproduction Metamorphosis Movement And much, much more!
Publisher: The Experiment
ISBN: 1615196498
Category : Nature
Languages : en
Pages : 226
Book Description
The extraordinary inner-workings of the world’s amazing, adaptable insects A tiny textbook to learn on your own How Insects Work goes beyond the typical field guide to show us not only what insects look like but why. Arguably the most successful land animals—still going strong after five mass extinctions—insects have evolved a spectacular array of real-life superpowers to help them thrive in virtually every environment: Bumblebees’ wingbeats leave a faint electrical signal at each flower they visit to show that the nectar’s already been taken (see page 57), and houseflies defy gravity with tiny leg hairs that stick to the smoothest wall or ceiling (see page 69). In this in-depth, photo-filled handbook, discover the ways insects are even more astounding than you know—inside and out: Evolution Exoskeleton and Body Segments Senses Circulation Digestion Respiration Reproduction Metamorphosis Movement And much, much more!
The Biomechanics of Insect Flight
Author: Robert Dudley
Publisher: Princeton University Press
ISBN: 0691186340
Category : Science
Languages : en
Pages : 497
Book Description
From the rain forests of Borneo to the tenements of Manhattan, winged insects are a conspicuous and abundant feature of life on earth. Here, Robert Dudley presents the first comprehensive explanation of how insects fly. The author relates the biomechanics of flight to insect ecology and evolution in a major new work of synthesis. The book begins with an overview of insect flight biomechanics. Dudley explains insect morphology, wing motions, aerodynamics, flight energetics, and flight metabolism within a modern phylogenetic setting. Drawing on biomechanical principles, he describes and evaluates flight behavior and the limits to flight performance. The author then takes the next step by developing evolutionary explanations of insect flight. He analyzes the origins of flight in insects, the roles of natural and sexual selection in determining how insects fly, and the relationship between flight and insect size, pollination, predation, dispersal, and migration. Dudley ranges widely--from basic aerodynamics to muscle physiology and swarming behavior--but his focus is the explanation of functional design from evolutionary and ecological perspectives. The importance of flight in the lives of insects has long been recognized but never systematically evaluated. This book addresses that shortcoming. Robert Dudley provides an introduction to insect flight that will be welcomed by students and researchers in biomechanics, entomology, evolution, ecology, and behavior.
Publisher: Princeton University Press
ISBN: 0691186340
Category : Science
Languages : en
Pages : 497
Book Description
From the rain forests of Borneo to the tenements of Manhattan, winged insects are a conspicuous and abundant feature of life on earth. Here, Robert Dudley presents the first comprehensive explanation of how insects fly. The author relates the biomechanics of flight to insect ecology and evolution in a major new work of synthesis. The book begins with an overview of insect flight biomechanics. Dudley explains insect morphology, wing motions, aerodynamics, flight energetics, and flight metabolism within a modern phylogenetic setting. Drawing on biomechanical principles, he describes and evaluates flight behavior and the limits to flight performance. The author then takes the next step by developing evolutionary explanations of insect flight. He analyzes the origins of flight in insects, the roles of natural and sexual selection in determining how insects fly, and the relationship between flight and insect size, pollination, predation, dispersal, and migration. Dudley ranges widely--from basic aerodynamics to muscle physiology and swarming behavior--but his focus is the explanation of functional design from evolutionary and ecological perspectives. The importance of flight in the lives of insects has long been recognized but never systematically evaluated. This book addresses that shortcoming. Robert Dudley provides an introduction to insect flight that will be welcomed by students and researchers in biomechanics, entomology, evolution, ecology, and behavior.
Insect Flight
Author: J. W. S. Pringle
Publisher: Cambridge University Press
ISBN: 052105995X
Category : Insects
Languages : en
Pages : 146
Book Description
Publisher: Cambridge University Press
ISBN: 052105995X
Category : Insects
Languages : en
Pages : 146
Book Description
Structure, Form, Movement
Author: Heinrich Hertel
Publisher:
ISBN:
Category : Animal locomotion
Languages : en
Pages : 272
Book Description
Publisher:
ISBN:
Category : Animal locomotion
Languages : en
Pages : 272
Book Description
Bioinspired Structures and Design
Author: Wole Soboyejo
Publisher: Cambridge University Press
ISBN: 1108963447
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.
Publisher: Cambridge University Press
ISBN: 1108963447
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.
Arthropod Biology and Evolution
Author: Alessandro Minelli
Publisher: Springer Science & Business Media
ISBN: 3642361609
Category : Science
Languages : en
Pages : 530
Book Description
More than two thirds of all living organisms described to date belong to the phylum Arthropoda. But their diversity, as measured in terms of species number, is also accompanied by an amazing disparity in terms of body form, developmental processes, and adaptations to every inhabitable place on Earth, from the deepest marine abysses to the earth surface and the air. The Arthropoda also include one of the most fashionable and extensively studied of all model organisms, the fruit-fly, whose name is not only linked forever to Mendelian and population genetics, but has more recently come back to centre stage as one of the most important and more extensively investigated models in developmental genetics. This approach has completely changed our appreciation of some of the most characteristic traits of arthropods as are the origin and evolution of segments, their regional and individual specialization, and the origin and evolution of the appendages. At approximately the same time as developmental genetics was eventually turning into the major agent in the birth of evolutionary developmental biology (evo-devo), molecular phylogenetics was challenging the traditional views on arthropod phylogeny, including the relationships among the four major groups: insects, crustaceans, myriapods, and chelicerates. In the meantime, palaeontology was revealing an amazing number of extinct forms that on the one side have contributed to a radical revisitation of arthropod phylogeny, but on the other have provided evidence of a previously unexpected disparity of arthropod and arthropod-like forms that often challenge a clear-cut delimitation of the phylum.
Publisher: Springer Science & Business Media
ISBN: 3642361609
Category : Science
Languages : en
Pages : 530
Book Description
More than two thirds of all living organisms described to date belong to the phylum Arthropoda. But their diversity, as measured in terms of species number, is also accompanied by an amazing disparity in terms of body form, developmental processes, and adaptations to every inhabitable place on Earth, from the deepest marine abysses to the earth surface and the air. The Arthropoda also include one of the most fashionable and extensively studied of all model organisms, the fruit-fly, whose name is not only linked forever to Mendelian and population genetics, but has more recently come back to centre stage as one of the most important and more extensively investigated models in developmental genetics. This approach has completely changed our appreciation of some of the most characteristic traits of arthropods as are the origin and evolution of segments, their regional and individual specialization, and the origin and evolution of the appendages. At approximately the same time as developmental genetics was eventually turning into the major agent in the birth of evolutionary developmental biology (evo-devo), molecular phylogenetics was challenging the traditional views on arthropod phylogeny, including the relationships among the four major groups: insects, crustaceans, myriapods, and chelicerates. In the meantime, palaeontology was revealing an amazing number of extinct forms that on the one side have contributed to a radical revisitation of arthropod phylogeny, but on the other have provided evidence of a previously unexpected disparity of arthropod and arthropod-like forms that often challenge a clear-cut delimitation of the phylum.
The Evolution of Insect Flight
Author: Andrei K. Brodsky
Publisher:
ISBN: 9780198500896
Category : Animal flight
Languages : en
Pages : 0
Book Description
The hardback edition of this was the first book on insect flight since J W S Pringle's classic Insect Flight was published in 1957. Much has been written since on applied and ecological aspects of flight, but the question of the origin of wings and flight, their structural concomitants, andthe related aerodynamical issues have been confined largely to armchair speculation in a scattered literature. This book is written by a leading authority on insect flight, and for the first time draws a coherent, empirically based picture of how insect flight may have evolved. Following excellentreviews the book is now being made available in paperback.
Publisher:
ISBN: 9780198500896
Category : Animal flight
Languages : en
Pages : 0
Book Description
The hardback edition of this was the first book on insect flight since J W S Pringle's classic Insect Flight was published in 1957. Much has been written since on applied and ecological aspects of flight, but the question of the origin of wings and flight, their structural concomitants, andthe related aerodynamical issues have been confined largely to armchair speculation in a scattered literature. This book is written by a leading authority on insect flight, and for the first time draws a coherent, empirically based picture of how insect flight may have evolved. Following excellentreviews the book is now being made available in paperback.
Bioinspired Actuators and Sensors
Author: Minoru Taya
Publisher: Cambridge University Press
ISBN: 1107065380
Category : Medical
Languages : en
Pages : 539
Book Description
From experts in engineering and biology, this is the first book to integrate sensor and actuator technology with bioinspired design.
Publisher: Cambridge University Press
ISBN: 1107065380
Category : Medical
Languages : en
Pages : 539
Book Description
From experts in engineering and biology, this is the first book to integrate sensor and actuator technology with bioinspired design.
Insects
Author: Hamed Rajabi
Publisher: Mdpi AG
ISBN: 9783036528939
Category : Science
Languages : en
Pages : 180
Book Description
In this thematic series, engineers and scientists come together to address two interesting interdisciplinary questions in functional morphology and biomechanics: How do the structure and material determine the function of insect body parts? How can insects inspire engineering innovations?
Publisher: Mdpi AG
ISBN: 9783036528939
Category : Science
Languages : en
Pages : 180
Book Description
In this thematic series, engineers and scientists come together to address two interesting interdisciplinary questions in functional morphology and biomechanics: How do the structure and material determine the function of insect body parts? How can insects inspire engineering innovations?