Author: Brian Hayes
Publisher: MIT Press
ISBN: 026203686X
Category : Mathematics
Languages : en
Pages : 245
Book Description
A non-mathematician explores mathematical terrain, reporting accessibly and engagingly on topics from Sudoku to probability. Brian Hayes wants to convince us that mathematics is too important and too much fun to be left to the mathematicians. Foolproof, and Other Mathematical Meditations is his entertaining and accessible exploration of mathematical terrain both far-flung and nearby, bringing readers tidings of mathematical topics from Markov chains to Sudoku. Hayes, a non-mathematician, argues that mathematics is not only an essential tool for understanding the world but also a world unto itself, filled with objects and patterns that transcend earthly reality. In a series of essays, Hayes sets off to explore this exotic terrain, and takes the reader with him. Math has a bad reputation: dull, difficult, detached from daily life. As a talking Barbie doll opined, “Math class is tough.” But Hayes makes math seem fun. Whether he's tracing the genealogy of a well-worn anecdote about a famous mathematical prodigy, or speculating about what would happen to a lost ball in the nth dimension, or explaining that there are such things as quasirandom numbers, Hayes wants readers to share his enthusiasm. That's why he imagines a cinematic treatment of the discovery of the Riemann zeta function (“The year: 1972. The scene: Afternoon tea in Fuld Hall at the Institute for Advanced Study in Princeton, New Jersey”), explains that there is math in Sudoku after all, and describes better-than-average averages. Even when some of these essays involve a hike up the learning curve, the view from the top is worth it.
Foolproof, and Other Mathematical Meditations
Author: Brian Hayes
Publisher: MIT Press
ISBN: 026203686X
Category : Mathematics
Languages : en
Pages : 245
Book Description
A non-mathematician explores mathematical terrain, reporting accessibly and engagingly on topics from Sudoku to probability. Brian Hayes wants to convince us that mathematics is too important and too much fun to be left to the mathematicians. Foolproof, and Other Mathematical Meditations is his entertaining and accessible exploration of mathematical terrain both far-flung and nearby, bringing readers tidings of mathematical topics from Markov chains to Sudoku. Hayes, a non-mathematician, argues that mathematics is not only an essential tool for understanding the world but also a world unto itself, filled with objects and patterns that transcend earthly reality. In a series of essays, Hayes sets off to explore this exotic terrain, and takes the reader with him. Math has a bad reputation: dull, difficult, detached from daily life. As a talking Barbie doll opined, “Math class is tough.” But Hayes makes math seem fun. Whether he's tracing the genealogy of a well-worn anecdote about a famous mathematical prodigy, or speculating about what would happen to a lost ball in the nth dimension, or explaining that there are such things as quasirandom numbers, Hayes wants readers to share his enthusiasm. That's why he imagines a cinematic treatment of the discovery of the Riemann zeta function (“The year: 1972. The scene: Afternoon tea in Fuld Hall at the Institute for Advanced Study in Princeton, New Jersey”), explains that there is math in Sudoku after all, and describes better-than-average averages. Even when some of these essays involve a hike up the learning curve, the view from the top is worth it.
Publisher: MIT Press
ISBN: 026203686X
Category : Mathematics
Languages : en
Pages : 245
Book Description
A non-mathematician explores mathematical terrain, reporting accessibly and engagingly on topics from Sudoku to probability. Brian Hayes wants to convince us that mathematics is too important and too much fun to be left to the mathematicians. Foolproof, and Other Mathematical Meditations is his entertaining and accessible exploration of mathematical terrain both far-flung and nearby, bringing readers tidings of mathematical topics from Markov chains to Sudoku. Hayes, a non-mathematician, argues that mathematics is not only an essential tool for understanding the world but also a world unto itself, filled with objects and patterns that transcend earthly reality. In a series of essays, Hayes sets off to explore this exotic terrain, and takes the reader with him. Math has a bad reputation: dull, difficult, detached from daily life. As a talking Barbie doll opined, “Math class is tough.” But Hayes makes math seem fun. Whether he's tracing the genealogy of a well-worn anecdote about a famous mathematical prodigy, or speculating about what would happen to a lost ball in the nth dimension, or explaining that there are such things as quasirandom numbers, Hayes wants readers to share his enthusiasm. That's why he imagines a cinematic treatment of the discovery of the Riemann zeta function (“The year: 1972. The scene: Afternoon tea in Fuld Hall at the Institute for Advanced Study in Princeton, New Jersey”), explains that there is math in Sudoku after all, and describes better-than-average averages. Even when some of these essays involve a hike up the learning curve, the view from the top is worth it.
Foolproof, and Other Mathematical Meditations
Author: Brian Hayes
Publisher: MIT Press
ISBN: 0262536072
Category : Mathematics
Languages : en
Pages : 245
Book Description
A non-mathematician explores mathematical terrain, reporting accessibly and engagingly on topics from Sudoku to probability. Brian Hayes wants to convince us that mathematics is too important and too much fun to be left to the mathematicians. Foolproof, and Other Mathematical Meditations is his entertaining and accessible exploration of mathematical terrain both far-flung and nearby, bringing readers tidings of mathematical topics from Markov chains to Sudoku. Hayes, a non-mathematician, argues that mathematics is not only an essential tool for understanding the world but also a world unto itself, filled with objects and patterns that transcend earthly reality. In a series of essays, Hayes sets off to explore this exotic terrain, and takes the reader with him. Math has a bad reputation: dull, difficult, detached from daily life. As a talking Barbie doll opined, “Math class is tough.” But Hayes makes math seem fun. Whether he's tracing the genealogy of a well-worn anecdote about a famous mathematical prodigy, or speculating about what would happen to a lost ball in the nth dimension, or explaining that there are such things as quasirandom numbers, Hayes wants readers to share his enthusiasm. That's why he imagines a cinematic treatment of the discovery of the Riemann zeta function (“The year: 1972. The scene: Afternoon tea in Fuld Hall at the Institute for Advanced Study in Princeton, New Jersey”), explains that there is math in Sudoku after all, and describes better-than-average averages. Even when some of these essays involve a hike up the learning curve, the view from the top is worth it.
Publisher: MIT Press
ISBN: 0262536072
Category : Mathematics
Languages : en
Pages : 245
Book Description
A non-mathematician explores mathematical terrain, reporting accessibly and engagingly on topics from Sudoku to probability. Brian Hayes wants to convince us that mathematics is too important and too much fun to be left to the mathematicians. Foolproof, and Other Mathematical Meditations is his entertaining and accessible exploration of mathematical terrain both far-flung and nearby, bringing readers tidings of mathematical topics from Markov chains to Sudoku. Hayes, a non-mathematician, argues that mathematics is not only an essential tool for understanding the world but also a world unto itself, filled with objects and patterns that transcend earthly reality. In a series of essays, Hayes sets off to explore this exotic terrain, and takes the reader with him. Math has a bad reputation: dull, difficult, detached from daily life. As a talking Barbie doll opined, “Math class is tough.” But Hayes makes math seem fun. Whether he's tracing the genealogy of a well-worn anecdote about a famous mathematical prodigy, or speculating about what would happen to a lost ball in the nth dimension, or explaining that there are such things as quasirandom numbers, Hayes wants readers to share his enthusiasm. That's why he imagines a cinematic treatment of the discovery of the Riemann zeta function (“The year: 1972. The scene: Afternoon tea in Fuld Hall at the Institute for Advanced Study in Princeton, New Jersey”), explains that there is math in Sudoku after all, and describes better-than-average averages. Even when some of these essays involve a hike up the learning curve, the view from the top is worth it.
On the Brink of Paradox
Author: Agustin Rayo
Publisher: MIT Press
ISBN: 0262039419
Category : Mathematics
Languages : en
Pages : 321
Book Description
An introduction to awe-inspiring ideas at the brink of paradox: infinities of different sizes, time travel, probability and measure theory, and computability theory. This book introduces the reader to awe-inspiring issues at the intersection of philosophy and mathematics. It explores ideas at the brink of paradox: infinities of different sizes, time travel, probability and measure theory, computability theory, the Grandfather Paradox, Newcomb's Problem, the Principle of Countable Additivity. The goal is to present some exceptionally beautiful ideas in enough detail to enable readers to understand the ideas themselves (rather than watered-down approximations), but without supplying so much detail that they abandon the effort. The philosophical content requires a mind attuned to subtlety; the most demanding of the mathematical ideas require familiarity with college-level mathematics or mathematical proof. The book covers Cantor's revolutionary thinking about infinity, which leads to the result that some infinities are bigger than others; time travel and free will, decision theory, probability, and the Banach-Tarski Theorem, which states that it is possible to decompose a ball into a finite number of pieces and reassemble the pieces so as to get two balls that are each the same size as the original. Its investigation of computability theory leads to a proof of Gödel's Incompleteness Theorem, which yields the amazing result that arithmetic is so complex that no computer could be programmed to output every arithmetical truth and no falsehood. Each chapter is followed by an appendix with answers to exercises. A list of recommended reading points readers to more advanced discussions. The book is based on a popular course (and MOOC) taught by the author at MIT.
Publisher: MIT Press
ISBN: 0262039419
Category : Mathematics
Languages : en
Pages : 321
Book Description
An introduction to awe-inspiring ideas at the brink of paradox: infinities of different sizes, time travel, probability and measure theory, and computability theory. This book introduces the reader to awe-inspiring issues at the intersection of philosophy and mathematics. It explores ideas at the brink of paradox: infinities of different sizes, time travel, probability and measure theory, computability theory, the Grandfather Paradox, Newcomb's Problem, the Principle of Countable Additivity. The goal is to present some exceptionally beautiful ideas in enough detail to enable readers to understand the ideas themselves (rather than watered-down approximations), but without supplying so much detail that they abandon the effort. The philosophical content requires a mind attuned to subtlety; the most demanding of the mathematical ideas require familiarity with college-level mathematics or mathematical proof. The book covers Cantor's revolutionary thinking about infinity, which leads to the result that some infinities are bigger than others; time travel and free will, decision theory, probability, and the Banach-Tarski Theorem, which states that it is possible to decompose a ball into a finite number of pieces and reassemble the pieces so as to get two balls that are each the same size as the original. Its investigation of computability theory leads to a proof of Gödel's Incompleteness Theorem, which yields the amazing result that arithmetic is so complex that no computer could be programmed to output every arithmetical truth and no falsehood. Each chapter is followed by an appendix with answers to exercises. A list of recommended reading points readers to more advanced discussions. The book is based on a popular course (and MOOC) taught by the author at MIT.
Fundamentals of Mathematics
Programming for the Puzzled
Author: Srini Devadas
Publisher: MIT Press
ISBN: 0262343193
Category : Computers
Languages : en
Pages : 273
Book Description
Learning programming with one of “the coolest applications around”: algorithmic puzzles ranging from scheduling selfie time to verifying the six degrees of separation hypothesis. This book builds a bridge between the recreational world of algorithmic puzzles (puzzles that can be solved by algorithms) and the pragmatic world of computer programming, teaching readers to program while solving puzzles. Few introductory students want to program for programming's sake. Puzzles are real-world applications that are attention grabbing, intriguing, and easy to describe. Each lesson starts with the description of a puzzle. After a failed attempt or two at solving the puzzle, the reader arrives at an Aha! moment—a search strategy, data structure, or mathematical fact—and the solution presents itself. The solution to the puzzle becomes the specification of the code to be written. Readers will thus know what the code is supposed to do before seeing the code itself. This represents a pedagogical philosophy that decouples understanding the functionality of the code from understanding programming language syntax and semantics. Python syntax and semantics required to understand the code are explained as needed for each puzzle. Readers need only the rudimentary grasp of programming concepts that can be obtained from introductory or AP computer science classes in high school. The book includes more than twenty puzzles and more than seventy programming exercises that vary in difficulty. Many of the puzzles are well known and have appeared in publications and on websites in many variations. They range from scheduling selfie time with celebrities to solving Sudoku problems in seconds to verifying the six degrees of separation hypothesis. The code for selected puzzle solutions is downloadable from the book's website; the code for all puzzle solutions is available to instructors.
Publisher: MIT Press
ISBN: 0262343193
Category : Computers
Languages : en
Pages : 273
Book Description
Learning programming with one of “the coolest applications around”: algorithmic puzzles ranging from scheduling selfie time to verifying the six degrees of separation hypothesis. This book builds a bridge between the recreational world of algorithmic puzzles (puzzles that can be solved by algorithms) and the pragmatic world of computer programming, teaching readers to program while solving puzzles. Few introductory students want to program for programming's sake. Puzzles are real-world applications that are attention grabbing, intriguing, and easy to describe. Each lesson starts with the description of a puzzle. After a failed attempt or two at solving the puzzle, the reader arrives at an Aha! moment—a search strategy, data structure, or mathematical fact—and the solution presents itself. The solution to the puzzle becomes the specification of the code to be written. Readers will thus know what the code is supposed to do before seeing the code itself. This represents a pedagogical philosophy that decouples understanding the functionality of the code from understanding programming language syntax and semantics. Python syntax and semantics required to understand the code are explained as needed for each puzzle. Readers need only the rudimentary grasp of programming concepts that can be obtained from introductory or AP computer science classes in high school. The book includes more than twenty puzzles and more than seventy programming exercises that vary in difficulty. Many of the puzzles are well known and have appeared in publications and on websites in many variations. They range from scheduling selfie time with celebrities to solving Sudoku problems in seconds to verifying the six degrees of separation hypothesis. The code for selected puzzle solutions is downloadable from the book's website; the code for all puzzle solutions is available to instructors.
Functions and Graphs
Author: I. M. Gelfand
Publisher: Courier Corporation
ISBN: 0486425649
Category : Mathematics
Languages : en
Pages : 116
Book Description
This volume presents students with problems and exercises designed to illuminate the properties of functions and graphs. The 1st part of the book employs simple functions to analyze the fundamental methods of constructing graphs. The 2nd half deals with more complicated and refined questions concerning linear functions, quadratic trinomials, linear fractional functions, power functions, and rational functions. 1969 edition.
Publisher: Courier Corporation
ISBN: 0486425649
Category : Mathematics
Languages : en
Pages : 116
Book Description
This volume presents students with problems and exercises designed to illuminate the properties of functions and graphs. The 1st part of the book employs simple functions to analyze the fundamental methods of constructing graphs. The 2nd half deals with more complicated and refined questions concerning linear functions, quadratic trinomials, linear fractional functions, power functions, and rational functions. 1969 edition.
Introduction to Elementary Mathematical Logic
Author: Abram Aronovich Stolyar
Publisher: Courier Corporation
ISBN: 0486645614
Category : Mathematics
Languages : en
Pages : 229
Book Description
This lucid, non-intimidating presentation by a Russian scholar explores propositional logic, propositional calculus, and predicate logic. Topics include computer science and systems analysis, linguistics, and problems in the foundations of mathematics. Accessible to high school students, it also constitutes a valuable review of fundamentals for professionals. 1970 edition.
Publisher: Courier Corporation
ISBN: 0486645614
Category : Mathematics
Languages : en
Pages : 229
Book Description
This lucid, non-intimidating presentation by a Russian scholar explores propositional logic, propositional calculus, and predicate logic. Topics include computer science and systems analysis, linguistics, and problems in the foundations of mathematics. Accessible to high school students, it also constitutes a valuable review of fundamentals for professionals. 1970 edition.
Turing's Vision
Author: Chris Bernhardt
Publisher: MIT Press
ISBN: 0262034549
Category : Biography & Autobiography
Languages : en
Pages : 209
Book Description
In 1936, when he was just twenty-four years old, Alan Turing wrote a remarkable paper in which he outlined the theory of computation, laying out the ideas that underlie all modern computers. This groundbreaking and powerful theory now forms the basis of computer science. In Turing's Vision, Chris Bernhardt explains the theory, Turing's most important contribution, for the general reader. Bernhardt argues that the strength of Turing's theory is its simplicity, and that, explained in a straightforward manner, it is eminently understandable by the nonspecialist. As Marvin Minsky writes, "The sheer simplicity of the theory's foundation and extraordinary short path from this foundation to its logical and surprising conclusions give the theory a mathematical beauty that alone guarantees it a permanent place in computer theory." Bernhardt begins with the foundation and systematically builds to the surprising conclusions. He also views Turing's theory in the context of mathematical history, other views of computation (including those of Alonzo Church), Turing's later work, and the birth of the modern computer. In the paper, "On Computable Numbers, with an Application to the Entscheidungsproblem," Turing thinks carefully about how humans perform computation, breaking it down into a sequence of steps, and then constructs theoretical machines capable of performing each step. Turing wanted to show that there were problems that were beyond any computer's ability to solve; in particular, he wanted to find a decision problem that he could prove was undecidable. To explain Turing's ideas, Bernhardt examines three well-known decision problems to explore the concept of undecidability; investigates theoretical computing machines, including Turing machines; explains universal machines; and proves that certain problems are undecidable, including Turing's problem concerning computable numbers.
Publisher: MIT Press
ISBN: 0262034549
Category : Biography & Autobiography
Languages : en
Pages : 209
Book Description
In 1936, when he was just twenty-four years old, Alan Turing wrote a remarkable paper in which he outlined the theory of computation, laying out the ideas that underlie all modern computers. This groundbreaking and powerful theory now forms the basis of computer science. In Turing's Vision, Chris Bernhardt explains the theory, Turing's most important contribution, for the general reader. Bernhardt argues that the strength of Turing's theory is its simplicity, and that, explained in a straightforward manner, it is eminently understandable by the nonspecialist. As Marvin Minsky writes, "The sheer simplicity of the theory's foundation and extraordinary short path from this foundation to its logical and surprising conclusions give the theory a mathematical beauty that alone guarantees it a permanent place in computer theory." Bernhardt begins with the foundation and systematically builds to the surprising conclusions. He also views Turing's theory in the context of mathematical history, other views of computation (including those of Alonzo Church), Turing's later work, and the birth of the modern computer. In the paper, "On Computable Numbers, with an Application to the Entscheidungsproblem," Turing thinks carefully about how humans perform computation, breaking it down into a sequence of steps, and then constructs theoretical machines capable of performing each step. Turing wanted to show that there were problems that were beyond any computer's ability to solve; in particular, he wanted to find a decision problem that he could prove was undecidable. To explain Turing's ideas, Bernhardt examines three well-known decision problems to explore the concept of undecidability; investigates theoretical computing machines, including Turing machines; explains universal machines; and proves that certain problems are undecidable, including Turing's problem concerning computable numbers.
Abstract Lie Algebras
Author: David J. Winter
Publisher: Courier Corporation
ISBN: 048646282X
Category : Mathematics
Languages : uk
Pages : 162
Book Description
Solid but concise, this account emphasizes Lie algebra's simplicity of theory, offering new approaches to major theorems and extensive treatment of Cartan and related Lie subalgebras over arbitrary fields. 1972 edition.
Publisher: Courier Corporation
ISBN: 048646282X
Category : Mathematics
Languages : uk
Pages : 162
Book Description
Solid but concise, this account emphasizes Lie algebra's simplicity of theory, offering new approaches to major theorems and extensive treatment of Cartan and related Lie subalgebras over arbitrary fields. 1972 edition.
Finite-dimensional Linear Analysis
Author: I. M. Glazman
Publisher: Courier Corporation
ISBN: 0486453324
Category : Mathematics
Languages : en
Pages : 548
Book Description
A sequence of 2,400 propositions and problems features only hints. Suitable for advanced undergraduates and graduate students, this unique approach encourages students to work out their own proofs. 1974 edition.
Publisher: Courier Corporation
ISBN: 0486453324
Category : Mathematics
Languages : en
Pages : 548
Book Description
A sequence of 2,400 propositions and problems features only hints. Suitable for advanced undergraduates and graduate students, this unique approach encourages students to work out their own proofs. 1974 edition.