Author: Friedrich Hensel
Publisher: Princeton University Press
ISBN: 140086500X
Category : Science
Languages : en
Pages : 263
Book Description
This is a long-needed general introduction to the physics and chemistry of the liquid-vapor phase transition of metals. Physicists and physical chemists have made great strides understanding the basic principles involved, and engineers have discovered a wide variety of new uses for fluid metals. Yet there has been no book that brings together the latest ideas and findings in the field or that bridges the conceptual gap between the condensed-matter physics relevant to a dense metallic liquid and the molecular chemistry relevant to a dilute atomic vapor. Friedrich Hensel and William Warren seek to change that here. They draw on cutting-edge research and data from carefully selected fluid-metal systems as they strive to develop a rigorous theoretical approach to predict the thermodynamic behavior of fluid metals over the entire liquid-vapor range. This book will appeal to theoreticians interested in metal-nonmetal transitions or continuous phase transitions in general. It will also be of great value to those who need to understand the practical applications of fluid metals, for example, as a high-temperature working fluid or as a key component of semiconductor manufacturing. Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Fluid Metals
Author: Friedrich Hensel
Publisher: Princeton University Press
ISBN: 140086500X
Category : Science
Languages : en
Pages : 263
Book Description
This is a long-needed general introduction to the physics and chemistry of the liquid-vapor phase transition of metals. Physicists and physical chemists have made great strides understanding the basic principles involved, and engineers have discovered a wide variety of new uses for fluid metals. Yet there has been no book that brings together the latest ideas and findings in the field or that bridges the conceptual gap between the condensed-matter physics relevant to a dense metallic liquid and the molecular chemistry relevant to a dilute atomic vapor. Friedrich Hensel and William Warren seek to change that here. They draw on cutting-edge research and data from carefully selected fluid-metal systems as they strive to develop a rigorous theoretical approach to predict the thermodynamic behavior of fluid metals over the entire liquid-vapor range. This book will appeal to theoreticians interested in metal-nonmetal transitions or continuous phase transitions in general. It will also be of great value to those who need to understand the practical applications of fluid metals, for example, as a high-temperature working fluid or as a key component of semiconductor manufacturing. Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 140086500X
Category : Science
Languages : en
Pages : 263
Book Description
This is a long-needed general introduction to the physics and chemistry of the liquid-vapor phase transition of metals. Physicists and physical chemists have made great strides understanding the basic principles involved, and engineers have discovered a wide variety of new uses for fluid metals. Yet there has been no book that brings together the latest ideas and findings in the field or that bridges the conceptual gap between the condensed-matter physics relevant to a dense metallic liquid and the molecular chemistry relevant to a dilute atomic vapor. Friedrich Hensel and William Warren seek to change that here. They draw on cutting-edge research and data from carefully selected fluid-metal systems as they strive to develop a rigorous theoretical approach to predict the thermodynamic behavior of fluid metals over the entire liquid-vapor range. This book will appeal to theoreticians interested in metal-nonmetal transitions or continuous phase transitions in general. It will also be of great value to those who need to understand the practical applications of fluid metals, for example, as a high-temperature working fluid or as a key component of semiconductor manufacturing. Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Fluid Metals
Author: Friedrich Hensel
Publisher:
ISBN:
Category : Liquid metals
Languages : en
Pages : 274
Book Description
This is a long-needed general introduction to the physics and chemistry of the liquid-vapor phase transition of metals. Physicists and physical chemists have made great strides understanding the basic principles involved, and engineers have discovered a wide variety of new uses for fluid metals. Yet there has been no book that brings together the latest ideas and findings in the field or that bridges the conceptual gap between the condensed-matter physics relevant to a dense metallic liquid and the molecular chemistry relevant to a dilute atomic vapor. Friedrich Hensel and William Warren seek to change that here. They draw on cutting-edge research and data from carefully selected fluid-metal systems as they strive to develop a rigorous theoretical approach to predict the thermodynamic behavior of fluid metals over the entire liquid-vapor range. This book will appeal to theoreticians interested in metal-nonmetal transitions or continuous phase transitions in general. It will also be of great value to those who need to understand the practical applications of fluid metals, for example, as a high-temperature working fluid or as a key component of semiconductor manufacturing. Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher:
ISBN:
Category : Liquid metals
Languages : en
Pages : 274
Book Description
This is a long-needed general introduction to the physics and chemistry of the liquid-vapor phase transition of metals. Physicists and physical chemists have made great strides understanding the basic principles involved, and engineers have discovered a wide variety of new uses for fluid metals. Yet there has been no book that brings together the latest ideas and findings in the field or that bridges the conceptual gap between the condensed-matter physics relevant to a dense metallic liquid and the molecular chemistry relevant to a dilute atomic vapor. Friedrich Hensel and William Warren seek to change that here. They draw on cutting-edge research and data from carefully selected fluid-metal systems as they strive to develop a rigorous theoretical approach to predict the thermodynamic behavior of fluid metals over the entire liquid-vapor range. This book will appeal to theoreticians interested in metal-nonmetal transitions or continuous phase transitions in general. It will also be of great value to those who need to understand the practical applications of fluid metals, for example, as a high-temperature working fluid or as a key component of semiconductor manufacturing. Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
Author: Ferry Roelofs
Publisher: Woodhead Publishing
ISBN: 0081019815
Category : Science
Languages : en
Pages : 464
Book Description
Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge. - Presents the latest information on one of the deliverables of the SESAME H2020 project - Provides an overview on the design and history of liquid metal cooled fast reactors worldwide - Describes the challenges in thermal hydraulics related to the design and safety analysis of liquid metal cooled fast reactors - Includes the codes, methods, correlations, guidelines and limitations for liquid metal fast reactor thermal hydraulic simulations clearly - Discusses state-of-the-art, multi-scale techniques for liquid metal fast reactor thermal hydraulics applications
Publisher: Woodhead Publishing
ISBN: 0081019815
Category : Science
Languages : en
Pages : 464
Book Description
Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge. - Presents the latest information on one of the deliverables of the SESAME H2020 project - Provides an overview on the design and history of liquid metal cooled fast reactors worldwide - Describes the challenges in thermal hydraulics related to the design and safety analysis of liquid metal cooled fast reactors - Includes the codes, methods, correlations, guidelines and limitations for liquid metal fast reactor thermal hydraulic simulations clearly - Discusses state-of-the-art, multi-scale techniques for liquid metal fast reactor thermal hydraulics applications
Handbook of Liquid Metals
Author: Jing Liu
Publisher: Springer Nature
ISBN: 9819716144
Category : Science
Languages : en
Pages : 1353
Book Description
This handbook systematically collects the latest scientific and technological knowledge on liquid metals obtained so far in this cutting edge frontier. Conventional materials such as metals, polymers, composites, ceramics and naturally derived matters, may not perform well when facing certain technological challenges. At around room temperature, most of such materials mainly stay at solid state and are often difficult to shape due to their high melting point. Meanwhile, although classical soft matters own good flexibility, their electrical conductivities including more behaviours appear not good enough which generally limited their utilizations. As a game-changing alternative, the room temperature liquid metal materials are quickly emerging as a new generation functional material which displayed many unconventional properties superior to traditional materials. Their outstanding versatile feature as “One material, diverse capabilities” is rather unique among existing materials and thus opens many exciting opportunities for scientific, technological and industrial developments. This handbook presents comprehensive reference information on liquid metal science and technology that are currently available. The major advancements as made before are collected and summarized. Representative liquid metal applications are illustrated. It helps readers obtain a comprehensive understanding of the technical progresses and fundamental discoveries in the frontier, and thus better explore and utilize liquid metal materials to address various challenging needs.
Publisher: Springer Nature
ISBN: 9819716144
Category : Science
Languages : en
Pages : 1353
Book Description
This handbook systematically collects the latest scientific and technological knowledge on liquid metals obtained so far in this cutting edge frontier. Conventional materials such as metals, polymers, composites, ceramics and naturally derived matters, may not perform well when facing certain technological challenges. At around room temperature, most of such materials mainly stay at solid state and are often difficult to shape due to their high melting point. Meanwhile, although classical soft matters own good flexibility, their electrical conductivities including more behaviours appear not good enough which generally limited their utilizations. As a game-changing alternative, the room temperature liquid metal materials are quickly emerging as a new generation functional material which displayed many unconventional properties superior to traditional materials. Their outstanding versatile feature as “One material, diverse capabilities” is rather unique among existing materials and thus opens many exciting opportunities for scientific, technological and industrial developments. This handbook presents comprehensive reference information on liquid metal science and technology that are currently available. The major advancements as made before are collected and summarized. Representative liquid metal applications are illustrated. It helps readers obtain a comprehensive understanding of the technical progresses and fundamental discoveries in the frontier, and thus better explore and utilize liquid metal materials to address various challenging needs.
Liquid Metals, Liquid Metal Alloys and Their Applications
Author: Defense Documentation Center (U.S.)
Publisher:
ISBN:
Category : Liquid metals
Languages : en
Pages : 172
Book Description
Publisher:
ISBN:
Category : Liquid metals
Languages : en
Pages : 172
Book Description
Liquid-metals Handbook
Liquid Metals
Author: Lei Fu
Publisher: John Wiley & Sons
ISBN: 3527828184
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
An up-to-date exploration of the properties and most recent applications of liquid metals In Liquid Metal: Properties, Mechanisms, and Applications, a pair of distinguished researchers delivers a comprehensive exploration of liquid metals with a strong focus on their structure and physicochemical properties, preparation methods, and tuning strategies. The book also illustrates the applications of liquid metals in fields as varied as mediated synthesis, 3D printing, flexible electronics, biomedicine, energy storage, and energy conversion. The authors include coverage of reactive mediums for synthesizing and assembling nanomaterials and direct-writing electronics, and the book offers access to supplementary video materials to highlight the concepts discussed within. Recent advancements in the field of liquid metals are also discussed, as are new opportunities for research and development in this rapidly developing area. The book also includes: A thorough introduction to the fundamentals of liquid metal, including a history of its discovery, its structure and physical properties, and its preparation Comprehensive explorations of the external field tuning of liquid metal, including electrical, magnetic, and chemical tuning Practical discussions of liquid metal as a new reaction medium, including nanomaterial synthesis and alloy preparation In-depth examinations of constructing techniques of liquid metal-based architectures, including injection, imprinting, and mask-assisted depositing Perfect for materials scientists, electrochemists, and catalytic chemists, Liquid Metal: Properties, Mechanisms, and Applications also belongs in the libraries of inorganic chemists, electronics engineers, and biochemists.
Publisher: John Wiley & Sons
ISBN: 3527828184
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
An up-to-date exploration of the properties and most recent applications of liquid metals In Liquid Metal: Properties, Mechanisms, and Applications, a pair of distinguished researchers delivers a comprehensive exploration of liquid metals with a strong focus on their structure and physicochemical properties, preparation methods, and tuning strategies. The book also illustrates the applications of liquid metals in fields as varied as mediated synthesis, 3D printing, flexible electronics, biomedicine, energy storage, and energy conversion. The authors include coverage of reactive mediums for synthesizing and assembling nanomaterials and direct-writing electronics, and the book offers access to supplementary video materials to highlight the concepts discussed within. Recent advancements in the field of liquid metals are also discussed, as are new opportunities for research and development in this rapidly developing area. The book also includes: A thorough introduction to the fundamentals of liquid metal, including a history of its discovery, its structure and physical properties, and its preparation Comprehensive explorations of the external field tuning of liquid metal, including electrical, magnetic, and chemical tuning Practical discussions of liquid metal as a new reaction medium, including nanomaterial synthesis and alloy preparation In-depth examinations of constructing techniques of liquid metal-based architectures, including injection, imprinting, and mask-assisted depositing Perfect for materials scientists, electrochemists, and catalytic chemists, Liquid Metal: Properties, Mechanisms, and Applications also belongs in the libraries of inorganic chemists, electronics engineers, and biochemists.
Materials for Space-power Liquid Metals Service
Author: John H. Stang
Publisher:
ISBN:
Category : Liquid metals
Languages : en
Pages : 14
Book Description
This memorandum deals with the use of liquid metals in advanced spacepower plants. The principal liquid-metal candidates for such applications are mercury, NaK, potassium, lithium, cesium, and sodium. These metals are used primarily as heat-transfer media and as working fluids at high temperatures. This memorandum identifies specific areas for molten metal use and discusses the materials, problems, and developments associated with their containment. (Author).
Publisher:
ISBN:
Category : Liquid metals
Languages : en
Pages : 14
Book Description
This memorandum deals with the use of liquid metals in advanced spacepower plants. The principal liquid-metal candidates for such applications are mercury, NaK, potassium, lithium, cesium, and sodium. These metals are used primarily as heat-transfer media and as working fluids at high temperatures. This memorandum identifies specific areas for molten metal use and discusses the materials, problems, and developments associated with their containment. (Author).
Engineering Aspects of Liquid Metals for Heat Transfer
Author: Thomas Trocki
Publisher:
ISBN:
Category : Liquid metals
Languages : en
Pages : 12
Book Description
Publisher:
ISBN:
Category : Liquid metals
Languages : en
Pages : 12
Book Description
Liquid metals nanotransformer for healthcare biosensors
Author: Yunlong Bai
Publisher: OAE Publishing Inc.
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 34
Book Description
Featuring low cost, low melting points, excellent biocompatibility, outstanding electrical conductivity, and mechanical properties, gallium-based liquid metals (LMs) have become a promising class of materials to fabricate flexible healthcare sensors. However, the extremely high surface tension hinders their manipulation and cooperation with substrates. To address this problem, the inspiration of nanomaterials has been adopted to mold LMs into LM nanoparticles (LMNPs) with expanded advantages. The transformability of LMNPs endows them with functionalities for sensors in multiple dimensions, such as intelligent response to specific molecules or strains, various morphologies, integration into high-resolution circuits, and conductive elastomers. This review aims to summarize the superior properties of LMs, transformability of LMNPs, and correlated advantages for sensor performance. Multidimensional functional sensing forms consisting of LMNPs and corresponding applications as healthcare sensors will be presented. In the end, the existing challenges and prospects in the processing and application of LMNPs will also be discussed.
Publisher: OAE Publishing Inc.
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 34
Book Description
Featuring low cost, low melting points, excellent biocompatibility, outstanding electrical conductivity, and mechanical properties, gallium-based liquid metals (LMs) have become a promising class of materials to fabricate flexible healthcare sensors. However, the extremely high surface tension hinders their manipulation and cooperation with substrates. To address this problem, the inspiration of nanomaterials has been adopted to mold LMs into LM nanoparticles (LMNPs) with expanded advantages. The transformability of LMNPs endows them with functionalities for sensors in multiple dimensions, such as intelligent response to specific molecules or strains, various morphologies, integration into high-resolution circuits, and conductive elastomers. This review aims to summarize the superior properties of LMs, transformability of LMNPs, and correlated advantages for sensor performance. Multidimensional functional sensing forms consisting of LMNPs and corresponding applications as healthcare sensors will be presented. In the end, the existing challenges and prospects in the processing and application of LMNPs will also be discussed.