Flight Vehicle System Identification PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Flight Vehicle System Identification PDF full book. Access full book title Flight Vehicle System Identification by Ravindra V. Jategaonkar. Download full books in PDF and EPUB format.

Flight Vehicle System Identification

Flight Vehicle System Identification PDF Author: Ravindra V. Jategaonkar
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN:
Category : Science
Languages : en
Pages : 568

Book Description
This valuable volume offers a systematic approach to flight vehicle system identification and exhaustively covers the time domain methodology. It addresses in detail the theoretical and practical aspects of various parameter estimation methods, including those in the stochastic framework and focusing on nonlinear models, cost functions, optimization methods, and residual analysis. A pragmatic and balanced account of pros and cons in each case is provided. The book also presents data gathering and model validation, and covers both large-scale systems and high-fidelity modeling. Real world problems dealing with a variety of flight vehicle applications are addressed and solutions are provided. Examples encompass such problems as estimation of aerodynamics, stability, and control derivatives from flight data, flight path reconstruction, nonlinearities in control surface effectiveness, stall hysteresis, unstable aircraft, and other critical considerations.

Flight Vehicle System Identification

Flight Vehicle System Identification PDF Author: Ravindra V. Jategaonkar
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN:
Category : Science
Languages : en
Pages : 568

Book Description
This valuable volume offers a systematic approach to flight vehicle system identification and exhaustively covers the time domain methodology. It addresses in detail the theoretical and practical aspects of various parameter estimation methods, including those in the stochastic framework and focusing on nonlinear models, cost functions, optimization methods, and residual analysis. A pragmatic and balanced account of pros and cons in each case is provided. The book also presents data gathering and model validation, and covers both large-scale systems and high-fidelity modeling. Real world problems dealing with a variety of flight vehicle applications are addressed and solutions are provided. Examples encompass such problems as estimation of aerodynamics, stability, and control derivatives from flight data, flight path reconstruction, nonlinearities in control surface effectiveness, stall hysteresis, unstable aircraft, and other critical considerations.

Aircraft and Rotorcraft System Identification

Aircraft and Rotorcraft System Identification PDF Author: Mark Brian Tischler
Publisher: AIAA Education
ISBN: 9781600868207
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.

Estate and Gift Taxation

Estate and Gift Taxation PDF Author: Paul B. Stephan
Publisher:
ISBN:
Category : Estates (Law)
Languages : en
Pages : 191

Book Description


Aircraft System Identification

Aircraft System Identification PDF Author: Eugene Morelli
Publisher: Sunflyte Enterprises
ISBN: 9780997430615
Category : Technology & Engineering
Languages : en
Pages : 618

Book Description
This book provides a comprehensive overview of both the theoretical underpinnings and the practical application of aircraft modeling based on experimental data also known as aircraft system identification. Much of the material presented comes from the authors own extensive research and teaching activities at the NASA Langley Research Center, and is based on real-world applications of system identification to aircraft. The book uses actual flight-test and wind-tunnel data for case studies and examples, and is a valuable resource for researchers and practicing engineers, as well as a textbook for postgraduate and senior-level courses. [...] The methods and algorithms explained in the book are implemented in a NASA software toolbox called SIDPAC (System IDentification Programs for AirCraft). SIDPAC is written in MATLAB®, and is available by request from NASA Langley Research Center. SIDPAC is composed of many different tools that implement a wide variety of approaches explained fully in the book. These tools can be readily applied to solve aircraft system identification problems.

Flight Vehicle System Identification

Flight Vehicle System Identification PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Flight Test System Identification

Flight Test System Identification PDF Author: Roger Larsson
Publisher: Linköping University Electronic Press
ISBN: 9176850706
Category : Science
Languages : en
Pages : 326

Book Description
With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.

Flight Dynamics and System Identification for Modern Feedback Control

Flight Dynamics and System Identification for Modern Feedback Control PDF Author: Jared A Grauer
Publisher: Woodhead Publishing
ISBN: 9780857094667
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Unmanned air vehicles are becoming increasingly popular alternatives for private applications which include, but are not limited to, fire fighting, search and rescue, atmospheric data collection, and crop surveys, to name a few. Among these vehicles are avian-inspired, flapping-wing designs, which are safe to operate near humans and are required to carry payloads while achieving manoeuverability and agility in low speed flight. Conventional methods and tools fall short of achieving the desired performance metrics and requirements of such craft. Flight dynamics and system identification for modern feedback control provides an in-depth study of the difficulties associated with achieving controlled performance in flapping-wing, avian-inspired flight, and a new model paradigm is derived using analytical and experimental methods, with which a controls designer may then apply familiar tools. This title consists of eight chapters and covers flapping-wing aircraft and flight dynamics, before looking at nonlinear, multibody modelling as well as flight testing and instrumentation. Later chapters examine system identification from flight test data, feedback control and linearization.

Aircraft and Rotorcraft System Identification

Aircraft and Rotorcraft System Identification PDF Author: Mark Brian Tischler
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN: 9781563478376
Category : Aeronautics
Languages : en
Pages : 0

Book Description
Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.

Robust and Adaptive Control

Robust and Adaptive Control PDF Author: Eugene Lavretsky
Publisher: Springer Science & Business Media
ISBN: 1447143965
Category : Technology & Engineering
Languages : en
Pages : 506

Book Description
Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems. The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: · case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; · detailed background material for each chapter to motivate theoretical developments; · realistic examples and simulation data illustrating key features of the methods described; and · problem solutions for instructors and MATLAB® code provided electronically. The theoretical content and practical applications reported address real-life aerospace problems, being based on numerous transitions of control-theoretic results into operational systems and airborne vehicles that are drawn from the authors’ extensive professional experience with The Boeing Company. The systems covered are challenging, often open-loop unstable, with uncertainties in their dynamics, and thus requiring both persistently reliable control and the ability to track commands either from a pilot or a guidance computer. Readers are assumed to have a basic understanding of root locus, Bode diagrams, and Nyquist plots, as well as linear algebra, ordinary differential equations, and the use of state-space methods in analysis and modeling of dynamical systems. Robust and Adaptive Control is intended to methodically teach senior undergraduate and graduate students how to construct stable and predictable control algorithms for realistic industrial applications. Practicing engineers and academic researchers will also find the book of great instructional value.

General Aviation Aircraft Design

General Aviation Aircraft Design PDF Author: Snorri Gudmundsson
Publisher: Butterworth-Heinemann
ISBN: 0123973295
Category : Technology & Engineering
Languages : en
Pages : 1058

Book Description
Find the right answer the first time with this useful handbook of preliminary aircraft design. Written by an engineer with close to 20 years of design experience, General Aviation Aircraft Design: Applied Methods and Procedures provides the practicing engineer with a versatile handbook that serves as the first source for finding answers to realistic aircraft design questions. The book is structured in an "equation/derivation/solved example" format for easy access to content. Readers will find it a valuable guide to topics such as sizing of horizontal and vertical tails to minimize drag, sizing of lifting surfaces to ensure proper dynamic stability, numerical performance methods, and common faults and fixes in aircraft design. In most cases, numerical examples involve actual aircraft specs. Concepts are visually depicted by a number of useful black-and-white figures, photos, and graphs (with full-color images included in the eBook only). Broad and deep in coverage, it is intended for practicing engineers, aerospace engineering students, mathematically astute amateur aircraft designers, and anyone interested in aircraft design. Organized by articles and structured in an "equation/derivation/solved example" format for easy access to the content you need Numerical examples involve actual aircraft specs Contains high-interest topics not found in other texts, including sizing of horizontal and vertical tails to minimize drag, sizing of lifting surfaces to ensure proper dynamic stability, numerical performance methods, and common faults and fixes in aircraft design Provides a unique safety-oriented design checklist based on industry experience Discusses advantages and disadvantages of using computational tools during the design process Features detailed summaries of design options detailing the pros and cons of each aerodynamic solution Includes three case studies showing applications to business jets, general aviation aircraft, and UAVs Numerous high-quality graphics clearly illustrate the book's concepts (note: images are full-color in eBook only)