Author: Ralph D. Kimberlin
Publisher: AIAA
ISBN: 9781600860560
Category : Airplanes
Languages : en
Pages : 464
Book Description
Annotation The measurement of performance during an airplane's flight, testing is one of the more important tasks to be accomplished during its development as it impacts on both the airplane's safety and its marketability. This book discusses performance for both propeller-driven and jet aircraft.
Flight Testing of Fixed Wing Aircraft
Author: Ralph D. Kimberlin
Publisher: AIAA
ISBN: 9781600860560
Category : Airplanes
Languages : en
Pages : 464
Book Description
Annotation The measurement of performance during an airplane's flight, testing is one of the more important tasks to be accomplished during its development as it impacts on both the airplane's safety and its marketability. This book discusses performance for both propeller-driven and jet aircraft.
Publisher: AIAA
ISBN: 9781600860560
Category : Airplanes
Languages : en
Pages : 464
Book Description
Annotation The measurement of performance during an airplane's flight, testing is one of the more important tasks to be accomplished during its development as it impacts on both the airplane's safety and its marketability. This book discusses performance for both propeller-driven and jet aircraft.
Introduction to Flight Testing
Author: James W. Gregory
Publisher: John Wiley & Sons
ISBN: 111894982X
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
Introduction to Flight Testing Introduction to Flight Testing Provides an introduction to the basic flight testing methods employed on general aviation aircraft and unmanned aerial vehicles Introduction to Flight Testing provides a concise introduction to the basic flight testing methods employed on general aviation aircraft and unmanned aerial vehicles for courses in aeronautical engineering. There is particular emphasis on the use of modern on-board instruments and inexpensive, off-the-shelf portable devices that make flight testing accessible to nearly any student. This text presents a clear articulation of standard methods for measuring aircraft performance characteristics. Topics covered include aircraft and instruments, digital data acquisition techniques, flight test planning, the standard atmosphere, uncertainty analysis, level flight performance, airspeed calibration, stall, climb and glide, take-off and landing, level turn, static and dynamic longitudinal stability, lateral-directional stability, and flight testing of unmanned aircraft systems. Unique to this book is a detailed discussion of digital data acquisition (DAQ) techniques, which are an integral part of modern flight test programs. This treatment includes discussion of the analog-to-digital conversion, sample rate, aliasing, and filtering. These critical details provide the flight test engineer with the insight needed to understand the capabilities and limitations of digital DAQ. Key features: Provides an introduction to the basic flight testing methods and instrumentation employed on general aviation aircraft and unmanned aerial vehicles. Includes examples of flight testing on general aviation aircraft such as Cirrus, Diamond, and Cessna aircraft, along with unmanned aircraft vehicles. Suitable for courses on Aircraft Flight Test Engineering. Introduction to Flight Testing provides resources and guidance for practitioners in the rapidly-developing field of drone performance flight test and the general aviation flight test community.
Publisher: John Wiley & Sons
ISBN: 111894982X
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
Introduction to Flight Testing Introduction to Flight Testing Provides an introduction to the basic flight testing methods employed on general aviation aircraft and unmanned aerial vehicles Introduction to Flight Testing provides a concise introduction to the basic flight testing methods employed on general aviation aircraft and unmanned aerial vehicles for courses in aeronautical engineering. There is particular emphasis on the use of modern on-board instruments and inexpensive, off-the-shelf portable devices that make flight testing accessible to nearly any student. This text presents a clear articulation of standard methods for measuring aircraft performance characteristics. Topics covered include aircraft and instruments, digital data acquisition techniques, flight test planning, the standard atmosphere, uncertainty analysis, level flight performance, airspeed calibration, stall, climb and glide, take-off and landing, level turn, static and dynamic longitudinal stability, lateral-directional stability, and flight testing of unmanned aircraft systems. Unique to this book is a detailed discussion of digital data acquisition (DAQ) techniques, which are an integral part of modern flight test programs. This treatment includes discussion of the analog-to-digital conversion, sample rate, aliasing, and filtering. These critical details provide the flight test engineer with the insight needed to understand the capabilities and limitations of digital DAQ. Key features: Provides an introduction to the basic flight testing methods and instrumentation employed on general aviation aircraft and unmanned aerial vehicles. Includes examples of flight testing on general aviation aircraft such as Cirrus, Diamond, and Cessna aircraft, along with unmanned aircraft vehicles. Suitable for courses on Aircraft Flight Test Engineering. Introduction to Flight Testing provides resources and guidance for practitioners in the rapidly-developing field of drone performance flight test and the general aviation flight test community.
Flight Testing Homebuilt Aircraft
Author: Vaughan Askue
Publisher: Iowa State Press
ISBN: 9780813813080
Category : Transportation
Languages : en
Pages : 177
Book Description
Now that it's built, how well will it fly? Flight Testing Homebuilt Aircraft tells how to test such aircraft systematically and safely, with professional results. It defines flight testing as a four-phase step-by-step process of learning the limitations of an aircraft; defining and eliminating aircraft problems; and determining aircraft capability and optimum flying techniques - all with minimum risk to pilot and machine. With straightforward description and more than 80 illustrations, the book teaches builders to use this process to design thorough, safe flight tests customized to specific aircraft in specific testing environments.
Publisher: Iowa State Press
ISBN: 9780813813080
Category : Transportation
Languages : en
Pages : 177
Book Description
Now that it's built, how well will it fly? Flight Testing Homebuilt Aircraft tells how to test such aircraft systematically and safely, with professional results. It defines flight testing as a four-phase step-by-step process of learning the limitations of an aircraft; defining and eliminating aircraft problems; and determining aircraft capability and optimum flying techniques - all with minimum risk to pilot and machine. With straightforward description and more than 80 illustrations, the book teaches builders to use this process to design thorough, safe flight tests customized to specific aircraft in specific testing environments.
Operational Aircraft Performance and Flight Test Practices
Author: Mario Asselin
Publisher: American Institute of Aeronautics and Astronautics Incorporated
ISBN: 9781624105920
Category : Airplanes
Languages : en
Pages : 0
Book Description
Serves as a single source reference, from the basic theory to practical cases, for certification flight testing and operational performance monitoring. The book provides more real-life examples than are offered in traditional textbooks.
Publisher: American Institute of Aeronautics and Astronautics Incorporated
ISBN: 9781624105920
Category : Airplanes
Languages : en
Pages : 0
Book Description
Serves as a single source reference, from the basic theory to practical cases, for certification flight testing and operational performance monitoring. The book provides more real-life examples than are offered in traditional textbooks.
Small Unmanned Fixed-wing Aircraft Design
Author: Andrew J. Keane
Publisher: John Wiley & Sons
ISBN: 1119406323
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
Small Unmanned Fixed-wing Aircraft Design is the essential guide to designing, building and testing fixed wing UAVs (or drones). It deals with aircraft from two to 150 kg in weight and is based on the first-hand experiences of the world renowned UAV team at the UK’s University of Southampton. The book covers both the practical aspects of designing, manufacturing and flight testing and outlines and the essential calculations needed to underpin successful designs. It describes the entire process of UAV design from requirements definition to configuration layout and sizing, through preliminary design and analysis using simple panel codes and spreadsheets to full CFD and FEA models and on to detailed design with parametric CAD tools. Its focus is on modest cost approaches that draw heavily on the latest digital design and manufacturing methods, including a strong emphasis on utilizing off-the-shelf components, low cost analysis, automated geometry modelling and 3D printing. It deliberately avoids a deep theoretical coverage of aerodynamics or structural mechanics; rather it provides a design team with sufficient insights and guidance to get the essentials undertaken more pragmatically. The book contains many all-colour illustrations of the dozens of aircraft built by the authors and their students over the last ten years giving much detailed information on what works best. It is predominantly aimed at under-graduate and MSc level student design and build projects, but will be of interest to anyone engaged in the practical problems of getting quite complex unmanned aircraft flying. It should also appeal to the more sophisticated aero-modeller and those engaged on research based around fixed wing UAVs.
Publisher: John Wiley & Sons
ISBN: 1119406323
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
Small Unmanned Fixed-wing Aircraft Design is the essential guide to designing, building and testing fixed wing UAVs (or drones). It deals with aircraft from two to 150 kg in weight and is based on the first-hand experiences of the world renowned UAV team at the UK’s University of Southampton. The book covers both the practical aspects of designing, manufacturing and flight testing and outlines and the essential calculations needed to underpin successful designs. It describes the entire process of UAV design from requirements definition to configuration layout and sizing, through preliminary design and analysis using simple panel codes and spreadsheets to full CFD and FEA models and on to detailed design with parametric CAD tools. Its focus is on modest cost approaches that draw heavily on the latest digital design and manufacturing methods, including a strong emphasis on utilizing off-the-shelf components, low cost analysis, automated geometry modelling and 3D printing. It deliberately avoids a deep theoretical coverage of aerodynamics or structural mechanics; rather it provides a design team with sufficient insights and guidance to get the essentials undertaken more pragmatically. The book contains many all-colour illustrations of the dozens of aircraft built by the authors and their students over the last ten years giving much detailed information on what works best. It is predominantly aimed at under-graduate and MSc level student design and build projects, but will be of interest to anyone engaged in the practical problems of getting quite complex unmanned aircraft flying. It should also appeal to the more sophisticated aero-modeller and those engaged on research based around fixed wing UAVs.
On Subscale Flight Testing
Author: Alejandro Sobron
Publisher: Linköping University Electronic Press
ISBN: 9176852202
Category :
Languages : en
Pages : 130
Book Description
Downscaled physical models, also referred to as subscale models, have played an essential role in the investigation of the complex physics of flight until the recent disruption of numerical simulation. Despite the fact that improvements in computational methods are slowly pushing experimental techniques towards a secondary role as verification or calibration tools, real-world testing of physical prototypes still provides an unmatched confidence. Physical models are very effective at revealing issues that are sometimes not correctly identified in the virtual domain, and hence can be a valuable complement to other design tools. But traditional wind-tunnel testing cannot always meet all of the requirements of modern aeronautical research and development. It is nowadays too expensive to use these scarce facilities to explore different design iterations during the initial stages of aircraft development, or to experiment with new and immature technologies. Testing of free-flight subscale models, referred to as Subscale Flight Testing (SFT), could offer an affordable and low-risk alternative for complementing conventional techniques with both qualitative and quantitative information. The miniaturisation of mechatronic systems, the advances in rapid-prototyping techniques and power storage, as well as new manufacturing methods, currently enable the development of sophisticated test objects at scales that were impractical some decades ago. Moreover, the recent boom in the commercial drone industry has driven a quick development of specialised electronics and sensors, which offer nowadays surprising capabilities at competitive prices. These recent technological disruptions have significantly altered the cost-benefit function of SFT and it is necessary to re-evaluate its potential in the contemporary aircraft development context. This thesis aims to increase the comprehension and knowledge of the SFT method in order to define a practical framework for its use in aircraft design; focusing on low-cost, short-time solutions that don’t require more than a small organization and few resources. This objective is approached from a theoretical point of view by means of an analysis of the physical and practical limitations of the scaling laws; and from an empirical point of view by means of field experiments aimed at identifying practical needs for equipment, methods, and tools. A low-cost data acquisition system is developed and tested; a novel method for semi-automated flight testing in small airspaces is proposed; a set of tools for analysis and visualisation of flight data is presented; and it is also demonstrated that it is possible to explore and demonstrate new technology using SFT with a very limited amount of economic and human resources. All these, together with a theoretical review and contextualisation, contribute to increasing the comprehension and knowledge of the SFT method in general, and its potential applications in aircraft conceptual design in particular.
Publisher: Linköping University Electronic Press
ISBN: 9176852202
Category :
Languages : en
Pages : 130
Book Description
Downscaled physical models, also referred to as subscale models, have played an essential role in the investigation of the complex physics of flight until the recent disruption of numerical simulation. Despite the fact that improvements in computational methods are slowly pushing experimental techniques towards a secondary role as verification or calibration tools, real-world testing of physical prototypes still provides an unmatched confidence. Physical models are very effective at revealing issues that are sometimes not correctly identified in the virtual domain, and hence can be a valuable complement to other design tools. But traditional wind-tunnel testing cannot always meet all of the requirements of modern aeronautical research and development. It is nowadays too expensive to use these scarce facilities to explore different design iterations during the initial stages of aircraft development, or to experiment with new and immature technologies. Testing of free-flight subscale models, referred to as Subscale Flight Testing (SFT), could offer an affordable and low-risk alternative for complementing conventional techniques with both qualitative and quantitative information. The miniaturisation of mechatronic systems, the advances in rapid-prototyping techniques and power storage, as well as new manufacturing methods, currently enable the development of sophisticated test objects at scales that were impractical some decades ago. Moreover, the recent boom in the commercial drone industry has driven a quick development of specialised electronics and sensors, which offer nowadays surprising capabilities at competitive prices. These recent technological disruptions have significantly altered the cost-benefit function of SFT and it is necessary to re-evaluate its potential in the contemporary aircraft development context. This thesis aims to increase the comprehension and knowledge of the SFT method in order to define a practical framework for its use in aircraft design; focusing on low-cost, short-time solutions that don’t require more than a small organization and few resources. This objective is approached from a theoretical point of view by means of an analysis of the physical and practical limitations of the scaling laws; and from an empirical point of view by means of field experiments aimed at identifying practical needs for equipment, methods, and tools. A low-cost data acquisition system is developed and tested; a novel method for semi-automated flight testing in small airspaces is proposed; a set of tools for analysis and visualisation of flight data is presented; and it is also demonstrated that it is possible to explore and demonstrate new technology using SFT with a very limited amount of economic and human resources. All these, together with a theoretical review and contextualisation, contribute to increasing the comprehension and knowledge of the SFT method in general, and its potential applications in aircraft conceptual design in particular.
The Anatomy of the Airplane
Author: Darrol Stinton
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 488
Book Description
This work bridges the gap between aeronautical principles and the practical world of aeroplanes by explaining aircraft design in terms of aerodynamics, propulsion, land and water operation, and structural arrangement. The book has been updated to include the main advances in aircraft design, propulsion and manufacture since it was first published in 1996.
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 488
Book Description
This work bridges the gap between aeronautical principles and the practical world of aeroplanes by explaining aircraft design in terms of aerodynamics, propulsion, land and water operation, and structural arrangement. The book has been updated to include the main advances in aircraft design, propulsion and manufacture since it was first published in 1996.
Aircraft and Rotorcraft System Identification
Author: Mark Brian Tischler
Publisher: AIAA Education
ISBN: 9781600868207
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.
Publisher: AIAA Education
ISBN: 9781600868207
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.
Introduction to Flight Testing and Applied Aerodynamics
Author: Barnes Warnock McCormick
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN: 9781600868276
Category : Science
Languages : en
Pages : 156
Book Description
An introduction into the art and science of measuring and predicting airplane performance, ""Introduction to Flight Testing and Applied Aerodynamics"" will benefit students, homebuilders, pilots, and engineers in learning how to collect and analyze data relevant to the takeoff, climb, cruise, handling qualities, descent, and landing of an aircraft. This textbook presents a basic and concise analysis of airplane performance, stability, and control. Basic algebra, trigonometry, and some calculus are used. Topics discussed include: Engine and propeller performance; Estimation of drag; Airplane dynamics; Wing spanwise lift distributions; Flight experimentation; Airspeed calibration; Takeoff performance; Climb performance; and, Dynamic and static stability. Special features: examples containing student-obtained data about specific airplanes and engines; simple experiments that determine an airplane's performance and handling qualities; and, end-of-chapter problems (with answers supplied in an appendix).
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN: 9781600868276
Category : Science
Languages : en
Pages : 156
Book Description
An introduction into the art and science of measuring and predicting airplane performance, ""Introduction to Flight Testing and Applied Aerodynamics"" will benefit students, homebuilders, pilots, and engineers in learning how to collect and analyze data relevant to the takeoff, climb, cruise, handling qualities, descent, and landing of an aircraft. This textbook presents a basic and concise analysis of airplane performance, stability, and control. Basic algebra, trigonometry, and some calculus are used. Topics discussed include: Engine and propeller performance; Estimation of drag; Airplane dynamics; Wing spanwise lift distributions; Flight experimentation; Airspeed calibration; Takeoff performance; Climb performance; and, Dynamic and static stability. Special features: examples containing student-obtained data about specific airplanes and engines; simple experiments that determine an airplane's performance and handling qualities; and, end-of-chapter problems (with answers supplied in an appendix).
Introduction to Aircraft Flight Mechanics
Author: Thomas R. Yechout
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.