Author: Harvey Motulsky
Publisher: Oxford University Press
ISBN: 9780198038344
Category : Mathematics
Languages : en
Pages : 352
Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Fitting Models to Biological Data Using Linear and Nonlinear Regression
Author: Harvey Motulsky
Publisher: Oxford University Press
ISBN: 9780198038344
Category : Mathematics
Languages : en
Pages : 352
Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Publisher: Oxford University Press
ISBN: 9780198038344
Category : Mathematics
Languages : en
Pages : 352
Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Fitting Models to Biological Data Using Linear and Nonlinear Regression
Author: Harvey Motulsky
Publisher: Oxford University Press
ISBN: 0198038348
Category : Mathematics
Languages : en
Pages : 352
Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Publisher: Oxford University Press
ISBN: 0198038348
Category : Mathematics
Languages : en
Pages : 352
Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Nonlinear Regression with R
Author: Christian Ritz
Publisher: Springer Science & Business Media
ISBN: 0387096167
Category : Mathematics
Languages : en
Pages : 151
Book Description
- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.
Publisher: Springer Science & Business Media
ISBN: 0387096167
Category : Mathematics
Languages : en
Pages : 151
Book Description
- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.
Applied Statistics in Agricultural, Biological, and Environmental Sciences
Author: Barry Glaz
Publisher: John Wiley & Sons
ISBN: 0891183590
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
Better experimental design and statistical analysis make for more robust science. A thorough understanding of modern statistical methods can mean the difference between discovering and missing crucial results and conclusions in your research, and can shape the course of your entire research career. With Applied Statistics, Barry Glaz and Kathleen M. Yeater have worked with a team of expert authors to create a comprehensive text for graduate students and practicing scientists in the agricultural, biological, and environmental sciences. The contributors cover fundamental concepts and methodologies of experimental design and analysis, and also delve into advanced statistical topics, all explored by analyzing real agronomic data with practical and creative approaches using available software tools. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.
Publisher: John Wiley & Sons
ISBN: 0891183590
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
Better experimental design and statistical analysis make for more robust science. A thorough understanding of modern statistical methods can mean the difference between discovering and missing crucial results and conclusions in your research, and can shape the course of your entire research career. With Applied Statistics, Barry Glaz and Kathleen M. Yeater have worked with a team of expert authors to create a comprehensive text for graduate students and practicing scientists in the agricultural, biological, and environmental sciences. The contributors cover fundamental concepts and methodologies of experimental design and analysis, and also delve into advanced statistical topics, all explored by analyzing real agronomic data with practical and creative approaches using available software tools. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.
Nonlinear Regression Analysis and Its Applications
Author: Douglas M. Bates
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 398
Book Description
Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 398
Book Description
Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.
Applied Linear Statistical Models
Author: Michael H. Kutner
Publisher: McGraw-Hill/Irwin
ISBN: 9780072386882
Category : Mathematics
Languages : en
Pages : 1396
Book Description
Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.
Publisher: McGraw-Hill/Irwin
ISBN: 9780072386882
Category : Mathematics
Languages : en
Pages : 1396
Book Description
Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.
Linear Models in Statistics
Author: Alvin C. Rencher
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690
Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690
Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Modern Analysis of Biological Data
Author: Stanislav Pekár
Publisher: Masarykova univerzita
ISBN: 8021081066
Category : Art
Languages : cs
Pages : 259
Book Description
Kniha je zaměřena na regresní modely, konkrétně jednorozměrné zobecněné lineární modely (GLM). Je určena především studentům a kolegům z biologických oborů a vyžaduje pouze základní statistické vzdělání, jakým je např. jednosemestrový kurz biostatistiky. Text knihy obsahuje nezbytné minimum statistické teorie, především však řešení 18 reálných příkladů z oblasti biologie. Každý příklad je rozpracován od popisu a stanovení cíle přes vývoj statistického modelu až po závěr. K analýze dat je použit populární a volně dostupný statistický software R. Příklady byly záměrně vybrány tak, aby upozornily na leckteré problémy a chyby, které se mohou v průběhu analýzy dat vyskytnout. Zároveň mají čtenáře motivovat k tomu, jak o statistických modelech přemýšlet a jak je používat. Řešení příkladů si může čtenář vyzkoušet sám na datech, jež jsou dodávána spolu s knihou.
Publisher: Masarykova univerzita
ISBN: 8021081066
Category : Art
Languages : cs
Pages : 259
Book Description
Kniha je zaměřena na regresní modely, konkrétně jednorozměrné zobecněné lineární modely (GLM). Je určena především studentům a kolegům z biologických oborů a vyžaduje pouze základní statistické vzdělání, jakým je např. jednosemestrový kurz biostatistiky. Text knihy obsahuje nezbytné minimum statistické teorie, především však řešení 18 reálných příkladů z oblasti biologie. Každý příklad je rozpracován od popisu a stanovení cíle přes vývoj statistického modelu až po závěr. K analýze dat je použit populární a volně dostupný statistický software R. Příklady byly záměrně vybrány tak, aby upozornily na leckteré problémy a chyby, které se mohou v průběhu analýzy dat vyskytnout. Zároveň mají čtenáře motivovat k tomu, jak o statistických modelech přemýšlet a jak je používat. Řešení příkladů si může čtenář vyzkoušet sám na datech, jež jsou dodávána spolu s knihou.
Nonlinear Models for Repeated Measurement Data
Author: Marie Davidian
Publisher: Routledge
ISBN: 1351428152
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Publisher: Routledge
ISBN: 1351428152
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Regression & Linear Modeling
Author: Jason W. Osborne
Publisher: SAGE Publications
ISBN: 1506302750
Category : Psychology
Languages : en
Pages : 489
Book Description
In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.
Publisher: SAGE Publications
ISBN: 1506302750
Category : Psychology
Languages : en
Pages : 489
Book Description
In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.