Fissile Materials Disposition Program Plutonium Immobilization Project Baseline Formulation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fissile Materials Disposition Program Plutonium Immobilization Project Baseline Formulation PDF full book. Access full book title Fissile Materials Disposition Program Plutonium Immobilization Project Baseline Formulation by . Download full books in PDF and EPUB format.

Fissile Materials Disposition Program Plutonium Immobilization Project Baseline Formulation

Fissile Materials Disposition Program Plutonium Immobilization Project Baseline Formulation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Since 1994 Lawrence Livermore National Laboratory (LLNL), with the help of several other laboratories and university groups, has been the lead laboratory for the Plutonium Immobilization Project (PIP). This involves, among other tasks, the development of a formulation and a fabrication process for a ceramic to be used in the immobilization of excess weapons-usable plutonium. This report reviews the history of the project as it relates to the development of the ceramic form. It describes the sample test plan for the pyrochlore-rich ceramic formulation that was selected, and it specifies the baseline formulation that has been adopted. It also presents compositional specifications (e.g. precursor compositions and mixing recipes) and other form and process specifications that are linked or potentially linked to the baseline formulation.

Fissile Materials Disposition Program Plutonium Immobilization Project Baseline Formulation

Fissile Materials Disposition Program Plutonium Immobilization Project Baseline Formulation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Since 1994 Lawrence Livermore National Laboratory (LLNL), with the help of several other laboratories and university groups, has been the lead laboratory for the Plutonium Immobilization Project (PIP). This involves, among other tasks, the development of a formulation and a fabrication process for a ceramic to be used in the immobilization of excess weapons-usable plutonium. This report reviews the history of the project as it relates to the development of the ceramic form. It describes the sample test plan for the pyrochlore-rich ceramic formulation that was selected, and it specifies the baseline formulation that has been adopted. It also presents compositional specifications (e.g. precursor compositions and mixing recipes) and other form and process specifications that are linked or potentially linked to the baseline formulation.

Integrated Development and Testing Plan for the Plutonium Immobilization Project

Integrated Development and Testing Plan for the Plutonium Immobilization Project PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 180

Book Description
This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D & T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D & T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D & T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the plutonium-containing ceramic forms within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2006 and be completed within 10 years.

Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation

Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 67

Book Description
Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy's Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

Plutonium Immobilization Project Development and Testing Technical Project Office Quality Assurance Program Description

Plutonium Immobilization Project Development and Testing Technical Project Office Quality Assurance Program Description PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Plutonium Immobilization Project (PIP) is one of several fissile materials disposition projects managed by the Department of Energy (DOE) Office of Fissile Materials Disposition (OFMD). The PIP is expected to evolve from the current Development and Testing (D and T) effort, to design, to construction, and finally to operations. Overall management and technical management of the D and T effort resides at the Lead Laboratory, Lawrence Livermore National Laboratory (LLNL), through the LLNL Manager, Fissile Materials Disposition Program (FMDP). Day to day project activities are managed by the D and T Technical Project Office (TPO), which reports to the LLNL Manager, FMDP. The D and T TPO consists of the Technical Manager, the TPO Quality Assurance (QA) Program Manager, and TPO Planning and Support Staff. This Quality Assurance Program Description (QAPD) defines the QA policies and controls that will be implemented by these TPO personnel in their management of D and T activities. This QAPD is consistent with and responsive to the Department of Energy Fissile Materials Disposition Program Quality Assurance Requirements Document (FMDP QARD). As the Project and upper level requirement's documents evolve, this QAPD will be updated as necessary to accurately define and describe the QA Program and Management of the PIP. The TPO has a policy that all development and testing activities be planned, performed and assessed in accordance with its customer's requirements, needs and expectations, and with a commitment to excellence and continuous improvement. The TPO QAPD describes implementation requirements which, when completed, will ensure that the project development and testing activities conform to the appropriate QA requirements. For the program to be effective, the TPO QA Program Manager will ensure that each site participating in D and T activities has developed a QAPD, which meets the customer's requirements, and has a designated quality leader in place. These customer requirements, needs, and expectations are defined in the FMDP QARD. Compliance with the TPO QAPD and procedures will ensure that our D and T deliverables meet the high standards of quality expected by the Department of Energy.

R & D Plan for Immobilization Technologies

R & D Plan for Immobilization Technologies PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 50

Book Description
In the aftermath of the Cold War, the US and Russia have agreed to large reductions in nuclear weapons. To aid in the selection of long- term fissile material management options, the Department of Energy's Fissile Materials Disposition Program (FMDP) is conducting studies of options for the storage and disposition of surplus plutonium (Pu). One set of alternatives for disposition involve immobilization. The immobilization alternatives provide for fixing surplus fissile materials in a host matrix in order to create a solid disposal form that is nuclear criticality-safe, proliferation-resistant and environmentally acceptable for long-term storage or disposal.

Fissile Material Disposition Program

Fissile Material Disposition Program PDF Author: Lawrence Livermore National Laboratory
Publisher:
ISBN:
Category : Nuclear weapons
Languages : en
Pages :

Book Description


Plutonium Immobilization Project Baseline Formulation

Plutonium Immobilization Project Baseline Formulation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
A key milestone for the Immobilization Project (AOP Milestone 3.2a) in Fiscal Year 1998 (FY98) is the definition of the baseline composition or formulation for the plutonium ceramic form. The baseline formulation for the plutonium ceramic product must be finalized before the repository- and plant-related process specifications can be determined. The baseline formulation that is currently specified is given in Table 1.1. In addition to the baseline formulation specification, this report provides specifications for two alternative formulations, related compositional specifications (e.g., precursor compositions and mixing recipes), and other preliminary form and process specifications that are linked to the baseline formulation. The preliminary specifications, when finalized, are not expected to vary tremendously from the preliminary values given.

Remote Material Handling in the Plutonium Immobilization Project. Revision 1

Remote Material Handling in the Plutonium Immobilization Project. Revision 1 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
With the downsizing of the US and Russian nuclear stockpiles, large quantities of weapons-usable plutonium in the US are being declared excess and will be disposed of by the Department of Energy Fissile Materials Disposition Program. To implement this program, DOE has selected the Savannah River Site (SRS) for the construction and operation of three new facilities: pit disassembly and conversion; mixed oxide fuel fabrication; and plutonium immobilization. The Plutonium Immobilization Project (PIP) will immobilize a portion of the excess plutonium in a hybrid ceramic and glass form containing high level waste for eventual disposal in a geologic repository. The PIP is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. Processing technology for the PIP is being developed jointly by the Lawrence Livermore National Laboratory and Westinghouse Savannah River Company. This paper will discuss development of the automated unpacking and sorting operations in the conversion area, and the automated puck and tray handling operations in the first stage immobilization area. Due to the high radiation levels and toxicity of the materials to be disposed of, the PIP will utilize automated equipment in a contained (glovebox) facility. Most operations involving plutonium-bearing materials will be performed remotely, separating personnel from the radiation source. Source term materials will be removed from the operations during maintenance. Maintenance will then be performed hands on within the containment using glove ports.

Plutonium Immobilization Form Evaluation

Plutonium Immobilization Form Evaluation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 24

Book Description
The 1994 National Academy of Sciences study and the 1997 assessment by DOE's Office of Nonproliferation and National Security have emphasized the importance of the overall objectives of the Plutonium Disposition Program of beginning disposition rapidly. President Clinton and other leaders of the G-7 plus one ('Political Eight') group of states, at the Moscow Nuclear Safety And Security Summit in April 1996, agreed on the objectives of accomplishing disposition of excess fissile material as soon as practicable. To meet these objectives, DOE has laid out an aggressive schedule in which large-scale immobilization operations would begin in 2005. Lawrence Livermore National Laboratory (LLNL), the lead laboratory for the development of Pu immobilization technologies for the Department of Energy's Office of Fissile Materials Disposition (MD), was requested by MD to recommend the preferred immobilization form and technology for the disposition of excess weapons-usable Pu. In a series of three separate evaluations, the technologies for the candidate glass and ceramic forms were compared against criteria and metrics that reflect programmatic and technical objectives: (1) Evaluation of the R & D and engineering data for the two forms against the decision criteria/metrics by a technical evaluation panel comprising experts from within the immobilization program. (2) Integrated assessment by LLNL immobilization management of the candidate technologies with respect to the weighted criteria and other programmatic objectives, leading to a recommendation to DOE/MD on the preferred technology based on technical factors. (3) Assessment of the decision process, evaluation, and recommendation by a peer review panel of independent experts. Criteria used to assess the relative merits of the immobilization technologies were a subset of the criteria previously used by MD to choose among disposition options leading to the Programmatic Environmental Impact Statement and Record of Decision for the Storage and Disposition of Weapons-Usable Fissile Materials, January 1997. Criteria were: (1) resistance to Pu theft, diversion, and recovery by a terrorist organization or rogue nation; (2) resistance to recovery and reuse by host nation; (3) technical viability, including technical maturity, development risk, and acceptability for repository disposal; (4) environmental, safety, and health factors; (5) cost effectiveness; and (6) timeliness. On the basis of the technical evaluation and assessments, in September, 1997, LLNL recommended to DOE/MD that ceramic technologies be developed for deployment in the planned Pu immobilization plant.

Immobilization as a Route to Surplus Fissile Materials Disposition

Immobilization as a Route to Surplus Fissile Materials Disposition PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
In the aftermath of the Cold War, the US and Russia have agreed to large reductions in nuclear weapons. To aid in the selection of long-term management options, DOE has undertaken a multifaceted study to select options for storage and disposition of plutonium (Pu) in keeping with the national policy that Pu must be subjected to the highest standards of safety, security, and accountability. One alternative being considered is immobilization. To arrive at a suitable immobilization form, the authors first reviewed published information on high-level waste (HLW) immobilization technologies in order to identify 72 possible Pu immobilization forms to be prescreened. Surviving forms were screened using multiattribute analysis to determine the most promising technologies. Promising immobilization families were further evaluated to identify chemical, engineering, environmental, safety, and health problems that remain to be solved prior to making technical decisions as to the viability of using the form for long-term disposition of plutonium. All data, analyses, and reports are being provided to the DOE Fissile Materials Disposition Project Office to support the Record of Decision that is anticipated in the fourth quarter of FY96.