Individualidade Biológica Em Perspectiva Filosófica PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Individualidade Biológica Em Perspectiva Filosófica PDF full book. Access full book title Individualidade Biológica Em Perspectiva Filosófica by Karel van den Bergen. Download full books in PDF and EPUB format.

Individualidade Biológica Em Perspectiva Filosófica

Individualidade Biológica Em Perspectiva Filosófica PDF Author: Karel van den Bergen
Publisher: Trafford Publishing
ISBN: 1466957980
Category : Science
Languages : en
Pages : 302

Book Description
Human reality, they taught me, is built by perception and its processing. We perceive individuals. Living individuality seems simple. Understanding it proved to be very difficult. This study tries to discover what figure appears when scientific biological individuality is projected in the secular and modern perspective of the paradoxical - philosophic theories of the one and the multiple. It became: not absoulte, intensely relative and holistic: perhaps a better model for human individuals and social wellbeing.

Individualidade Biológica Em Perspectiva Filosófica

Individualidade Biológica Em Perspectiva Filosófica PDF Author: Karel van den Bergen
Publisher: Trafford Publishing
ISBN: 1466957980
Category : Science
Languages : en
Pages : 302

Book Description
Human reality, they taught me, is built by perception and its processing. We perceive individuals. Living individuality seems simple. Understanding it proved to be very difficult. This study tries to discover what figure appears when scientific biological individuality is projected in the secular and modern perspective of the paradoxical - philosophic theories of the one and the multiple. It became: not absoulte, intensely relative and holistic: perhaps a better model for human individuals and social wellbeing.

 PDF Author:
Publisher: IICA
ISBN:
Category :
Languages : en
Pages : 330

Book Description


The Physics of Proteins

The Physics of Proteins PDF Author: Hans Frauenfelder
Publisher: Springer Science & Business Media
ISBN: 1441910441
Category : Science
Languages : en
Pages : 423

Book Description
Provides an introduction to the structure and function of biomolecules --- especially proteins --- and the physical tools used to investigate them The discussion concentrates on physical tools and properties, emphasizing techniques that are contributing to new developments and avoiding those that are already well established and whose results have already been exploited fully New tools appear regularly - synchrotron radiation, proton radiology, holography, optical tweezers, and muon radiography, for example, have all been used to open new areas of understanding

Introductory Physics for Biological Scientists

Introductory Physics for Biological Scientists PDF Author: Christof M. Aegerter
Publisher: Cambridge University Press
ISBN: 1108530214
Category : Science
Languages : en
Pages : 463

Book Description
Why do elephants have sturdier thigh bones than humans? Why can't ostriches fly? How do bacteria swim through fluids? With each chapter structured around relevant biological case studies and examples, this engaging, full-colour book introduces fundamental physical concepts essential in the study of biological phenomena. Optics is introduced within the context of butterfly wing colouration, electricity is explained through the propagation of nerve signals, and accelerated motion is conveniently illustrated using the example of the jumping armadillo. Other key physical concepts covered include waves, mechanical forces, thermodynamics and magnetism, and important biological techniques are also discussed within this context, such as gel electrophoresis and fluorescence microscopy. A detailed appendix provides further discussion of the mathematical concepts utilised within the book, and numerous exercises and quizzes allow readers to test their understanding of key concepts. This book is invaluable to students aiming to improve their quantitative and analytical skills and understand the deeper nature of biological phenomena.

The role of physical and biological soil crusts on the water balance in semiarid ecosystems

The role of physical and biological soil crusts on the water balance in semiarid ecosystems PDF Author: Sonia Chamizo de la Piedra
Publisher: Universidad Almería
ISBN: 8416027358
Category :
Languages : en
Pages : 235

Book Description
In arid and semiarid areas, the interplant spaces are usually covered by physical and biological soil crusts. These crusts, though representing an almost negligible portion of the soil profile, have a number of crucial roles. Soil crusts form the boundary between soil and atmosphere and therefore control gas, water and nutrient exchange into and through soils. Concretely, in the last decade, the study of biological soil crusts (BSCs) (complex communities of cyanobacteria, algae, fungi, lichens, mosses and other microorganisms in intimate association with soil particles) has drawn the attention of a growing number of researchers due to the key role they play in numerous processes in the ecosystems where they appear. Unlike physical crusts, BSCs protect soils against erosion by water and wind, and increase soil fertility by fixing atmospheric C and N, synthesising polysaccharides and reducing nutrient losses by runoff and erosion. Through their influence on numerous properties that affect how water moves though soils such as roughness, porosity, hydrophobicity, cracking, and albedo, BSCs play a key role in water processes, such as infiltration and runoff, evaporation and soil moisture. It is widely known the role of physical crusts in decreasing soil porosity and hydraulic conductivity, thus decreasing infiltration. However, there is controversy regarding the role of BSCs in infiltration and runoff processes. Some studies indicate that BSCs increase infiltration, and consequently, decrease runoff, whereas others have reported that they decrease infiltration and increase runoff or that they have no effect on either of them. In addition, the influence of BSCs on other soil water balance components such as evaporation and soil moisture has hardly been studied and the scarce existing studies also show contradicting results. With the aim of enlightening the role that BSCs play in the water balance in semiarid areas, in this thesis it has been analysed the influence of different soil crust types, physical crusts and various developmental stages of BSCs, on key soil water balance components such as infiltration-runoff, evaporation and soil moisture, at plot scale. Furthermore, to better understand how these crusts affect hydrological processes, the influence of the type of crust and developmental stage of the crust on different properties that affect water movement and retention in soils has been analysed. Last, spectral characteristics of the different crust types, as well as of vegetation, have been examined with the aim of developing a spectral classification system for differentiation of these common ground covers in semiarid areas that allows their mapping and the modelling of the effects of the crusted areas on hydrological and erosion processes on larger spatial scales (hillslope and catchment). To conduct this research, two areas where BSCs are widespread and that represent key spatial distributions of BSCs in semiarid ecosystems were chosen in the province of Almeria (SE Spain): El Cautivo (in the Tabernas Desert), a badlands catchment with silty-loam textured soils, and Las Amoladeras (in the Cabo de Gata-Níjar Natural Park), a flat area with sandy-loam textured soils. Our results show that BSCs increase aggregate stability, water retention capacity, and organic carbon and total nitrogen content compared to physical crusts and, within BSCs, these properties increase in the crust and the underlying soil as the crust is more developed (in terms of greater biomass and later-successional species composition). The increase in soil properties with the presence of BSCs is especially noticeable in the top layer of soil (0.01 m) and decreases with depth (0.01-0.05 m) (Chapter I). Through their effect increasing surface roughness and physico-chemical soil properties, BSCs increase infiltration and decrease runoff compared to physical crusts. In general, infiltration increases with greater BSC development (Chapter II). However, there are exceptions to this general pattern that are conditioned by other factors such as the spatial scale under study or the type of rainfall. At small plot sizes (0.25 m2) and after 1h-high intensity simulated rainfall (50 mmh-1), we found that well-developed BSCs such as lichens, generate higher runoff rates than less developed BSCs as cyanobacteria, and similar runoff rates to physical crusts (Chapter II). Thus, at microplot scales and under extreme events, the effect of well-developed BSCs in enhancing infiltration due to their greater roughness can be overcome by their ability to clog soil pores when wet, thus increasing runoff. However, when the influence of BSCs on infiltration and runoff is analysed under natural rain events and at larger spatial scales (1-10 m2), we found that, in low intensity rainfalls, runoff decreases with the cover of well-developed BSCs (lichens) and this effect is higher as the plot size increases (Chapter III). Such decrease in runoff with the presence of well-developed BSCs is due to the microtopography that these crusts confer to soils. Under high intensity rainfalls, BSC cover has no significant effect on runoff yield and the main factor acting to determine runoff generation is rainfall intensity (Chapter III). The removal of the crust initially causes infiltration to increase. But this effect diminishes over time as raindrop impact reseals the surface and a new physical crust is formed that increases runoff (Chapter II). Moreover, crust disturbance by trampling but, especially by removal, causes a dramatic increase in erosion (Chapter II). Erosion also depends on the type of BSC. Well-developed crusts as lichens and mosses generate lower erosion rates than less developed crusts as cyanobacteria. Regarding the influence of BSCs on soil evaporation, under saturation conditions and warm ambient temperatures, soil water loss is quick in all types of surfaces and no significant differences are found in soils with or without BSCs (Chapter V). However, during long cold wet periods, soil water loss is faster in soils devoid of BSCs than in those covered by them. Thus, BSC-crusted soils maintain more soil moisture at the upper soil layer (0.03 m) than adjacent soils where the BSC has been removed, during wet periods. At deeper soil (0.10 m), soil moisture is similar in both BSC-crusted and uncrusted soils. The removal of the BSC causes a higher decrease in soil moisture in fine-textured soils (Cautivo), where the presence of BSCs has a stronger influence on increasing porosity and infiltration, than in coarse-textured soils (Las Amoladeras). During dry soil periods, soil moisture is similar in soils with or without BSCs (Chapter V). Last, a quantitative analysis of spectral characteristics of vegetation, physical crusts and BSC developmental stages has demonstrated the possibility of classifying these common ground covers in semiarid areas based on distinctive spectral features (Chapter VI). The application of the classification system developed to multi and hiperspectral provides the possibility for future mapping of spatial distribution and temporal dynamics of BSCs, which is crucial to incorporating the effects of crusted surfaces in current hydrological and erosion models. Summarizing, compared to physical crusts, the presence of BSCs increase physico-chemical properties of underlying soils, especially in the first centimeters of soil, and this enhancement is greater as the BSC is more developed. Due to this increase in soil properties and the higher roughness that BSCs provide to soils, BSCs increase water input by increasing infiltration and soil moisture, and soil moisture, and reduce water output by reducing soil evaporation. Hence, compared to physical crusts, the presence of BSCs and, especially the presence of well-developed BSCs, have an overall positive effect on the local water balance in semiarid ecosystems, in addition to having a major role in protecting soils from erosion.

Current List of Medical Literature

Current List of Medical Literature PDF Author:
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 782

Book Description


Current Catalog

Current Catalog PDF Author: National Library of Medicine (U.S.)
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 1360

Book Description
Includes subject section, name section, and 1968-1970, technical reports.

Granulocytes—Advances in Research and Application: 2013 Edition

Granulocytes—Advances in Research and Application: 2013 Edition PDF Author:
Publisher: ScholarlyEditions
ISBN: 1481688367
Category : Medical
Languages : en
Pages : 375

Book Description
Granulocytes—Advances in Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Basophils. The editors have built Granulocytes—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Basophils in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Granulocytes—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Carbon Sequestration in Agricultural Soils

Carbon Sequestration in Agricultural Soils PDF Author: Alessandro Piccolo
Publisher: Springer Science & Business Media
ISBN: 3642233856
Category : Science
Languages : en
Pages : 316

Book Description
This compilation of techniques, methodologies and scientific data arises from a four-year Italian research project, which took place at university research stations in Turin, Piacenza, Naples and Potenza. Soil Organic Matter (SOM) represents an active and essential pool of the total organic carbon on the planet. Consequently, even small changes in this SOM carbon pool may have a significant impact on the concentration of atmospheric CO2. Recent new understanding of the chemical nature of SOM indicates that innovative and sustainable technologies may be applied to sequester carbon in agricultural soils. Overall results of the project have been applied to develop an innovative model for the prediction and description, both quantitatively and qualitatively, of carbon sequestration in agricultural soils. This book provides experts in different areas of soil science with a complete picture of the effects of new soil management methods and their potentials for practical application in farm management.

Molecular and Biological Physics of Living Systems

Molecular and Biological Physics of Living Systems PDF Author: R.K. Mishra
Publisher: Springer Science & Business Media
ISBN: 9400918909
Category : Science
Languages : en
Pages : 300

Book Description
The living organisms and systems possess extraordinary properties of programmed development, differentiation, growth, response, movement, duplication of key molecules and in m any cases higher mental functions. But the organisms are physical objects so they must follow laws of physics yet they do not seem to obey them. Physicists cannot easily persuade themselves to accept this as finally true. Non-living objects are governed by these laws of physics and they can explain these properties. However, in the living systems too phenomena encountered like coupled non-linear interactions, manybody effects, cooperativity, coherence, phase transitions, reversible metastable states are being understood better with the aid of powerful theoretical and experimental techniques and hope is raised that these may let us understand the mysteriousness of life. Contributors to this volume are a small fraction of rapidly growing scientific opinion that these aspects of living bodies are to be expected in a hitherto inadequately suspected state of matter which is in the main directed by these physical properties pushed almost to limit. This state of matter, the living matter, deserves to be called The Living State. Mishra proposes that given hydrogenic orbitals, atoms showing easy hybridisability and multiple valances, molecules with low-lying electronic levels, "loosestructure", and a metabolic pump in thermodynamically open system, various fundamental properties of living state can emerge automatically. Structurally these are all known to be present.