First-principles Studies on Degradation of Aqueous Amines for Carbon Dioxide Capture PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download First-principles Studies on Degradation of Aqueous Amines for Carbon Dioxide Capture PDF full book. Access full book title First-principles Studies on Degradation of Aqueous Amines for Carbon Dioxide Capture by Bohak Yoon. Download full books in PDF and EPUB format.

First-principles Studies on Degradation of Aqueous Amines for Carbon Dioxide Capture

First-principles Studies on Degradation of Aqueous Amines for Carbon Dioxide Capture PDF Author: Bohak Yoon
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Chemical absorption with aqueous amine-based solvents has been the most promising incumbent technology for post-combustion CO2 capture from flue gas. However, its extensive operation is severely limited by the large cost attributed to the enormous energy requirement for solvent regeneration and degradation issues leading to makeup of amine solvent loss. First-principles atomistic modeling can provide key insights into elucidating chemical phenomena pertinent to degradation behavior in CO2-loaded aqueous amine solution, which is often extremely challenging to be experimentally characterized. In this dissertation, our first-principles works on illuminating the molecular mechanisms governing solvent degradation of aqueous amine during CO2 capture are presented. Using density functional theory based ab initio molecular dynamics with enhanced sampling techniques, we identify elementary reactions governing CO2 capture and degradation. Molecular mechanisms of thermal and oxidative degradation of aqueous amine solvents are discussed in perspective of both thermodynamics and kinetics. We systematically investigate on the factors prevailing key reaction rates, such as amine functional groups, the steric hindrances, classes of amines (primary and secondary), concentration of amines, solvation nature, and temperature conditions. These factors may largely affect relative strengths of both inter- and intramolecular hydrogen bond interactions in CO2-loaded aqueous amine solution. Our theoretical studies further illustrate the importance of an atomistic-level description of solvation structure and dynamics that may primarily govern CO2 reaction with aqueous amine solvents and associated degradation mechanisms. This dissertation highlights the key role of first-principles computational modelling in accurately describing mechanistic understandings on CO2 capture by aqueous amine solvents and associated degradation processes. The enhanced atomisticlevel descriptions will provide more complete explanations for experimental characterizations and valuable suggestions on how to optimize existing solvents and design more cost-efficient solvents for carbon capture processes

First-principles Studies on Degradation of Aqueous Amines for Carbon Dioxide Capture

First-principles Studies on Degradation of Aqueous Amines for Carbon Dioxide Capture PDF Author: Bohak Yoon
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Chemical absorption with aqueous amine-based solvents has been the most promising incumbent technology for post-combustion CO2 capture from flue gas. However, its extensive operation is severely limited by the large cost attributed to the enormous energy requirement for solvent regeneration and degradation issues leading to makeup of amine solvent loss. First-principles atomistic modeling can provide key insights into elucidating chemical phenomena pertinent to degradation behavior in CO2-loaded aqueous amine solution, which is often extremely challenging to be experimentally characterized. In this dissertation, our first-principles works on illuminating the molecular mechanisms governing solvent degradation of aqueous amine during CO2 capture are presented. Using density functional theory based ab initio molecular dynamics with enhanced sampling techniques, we identify elementary reactions governing CO2 capture and degradation. Molecular mechanisms of thermal and oxidative degradation of aqueous amine solvents are discussed in perspective of both thermodynamics and kinetics. We systematically investigate on the factors prevailing key reaction rates, such as amine functional groups, the steric hindrances, classes of amines (primary and secondary), concentration of amines, solvation nature, and temperature conditions. These factors may largely affect relative strengths of both inter- and intramolecular hydrogen bond interactions in CO2-loaded aqueous amine solution. Our theoretical studies further illustrate the importance of an atomistic-level description of solvation structure and dynamics that may primarily govern CO2 reaction with aqueous amine solvents and associated degradation mechanisms. This dissertation highlights the key role of first-principles computational modelling in accurately describing mechanistic understandings on CO2 capture by aqueous amine solvents and associated degradation processes. The enhanced atomisticlevel descriptions will provide more complete explanations for experimental characterizations and valuable suggestions on how to optimize existing solvents and design more cost-efficient solvents for carbon capture processes

Advanced Applications of Ionic Liquids

Advanced Applications of Ionic Liquids PDF Author: Jamal Akhter Siddique
Publisher: Elsevier
ISBN: 0323984002
Category : Science
Languages : en
Pages : 569

Book Description
Advanced Applications of Ionic Liquids discusses the intersection of nanotechnology with ionic liquids (ILs) and materials, along with opportunities for advanced engineering applications in various research fields. Novel materials at nano scales with ILs creates an upsurge in the thermal and electrochemical constancy of the nano scale particles, making them ideal for industrial applications. The implementation of ILs at nano scale includes an interaction of constituents, which is beneficial for electron transfer reactions. These new composites can be implemented as sensors, electronics, catalysts and photonics. Including ILs in polymer composites enhance electrochemical consistency, govern particle size, upsurge conductivity, reduce toxicity, and more. This book is a comprehensive reference for researchers working with IL based technologies for environmental and energy applications. - Covers all industrial aspects and advanced applications of ionic liquids (ILs) - Discusses the advanced applications of ILs across multiple fields, including industrial chemistry and chemical engineering - Includes a discussion of the use of ionic liquids in functional polymers, with applications for catalysis, energy conservation, sensors, and more

Absorption-Based Post-Combustion Capture of Carbon Dioxide

Absorption-Based Post-Combustion Capture of Carbon Dioxide PDF Author: Paul Feron
Publisher: Woodhead Publishing
ISBN: 0081005156
Category : Technology & Engineering
Languages : en
Pages : 816

Book Description
Absorption-Based Post-Combustion Capture of Carbon Dioxide provides a comprehensive and authoritative review of the use of absorbents for post-combustion capture of carbon dioxide. As fossil fuel-based power generation technologies are likely to remain key in the future, at least in the short- and medium-term, carbon capture and storage will be a critical greenhouse gas reduction technique. Post-combustion capture involves the removal of carbon dioxide from flue gases after fuel combustion, meaning that carbon dioxide can then be compressed and cooled to form a safely transportable liquid that can be stored underground. - Provides researchers in academia and industry with an authoritative overview of the amine-based methods for carbon dioxide capture from flue gases and related processes - Editors and contributors are well known experts in the field - Presents the first book on this specific topic

Advanced CO2 Capture Technologies

Advanced CO2 Capture Technologies PDF Author: Shin-ichi Nakao
Publisher: Springer
ISBN: 3030188582
Category : Technology & Engineering
Languages : en
Pages : 90

Book Description
This book summarises the advanced CO2 capture technologies that can be used to reduce greenhouse gas emissions, especially those from large-scale sources, such as power-generation and steel-making plants. Focusing on the fundamental chemistry and chemical processes, as well as advanced technologies, including absorption and adsorption, it also discusses other aspects of the major CO2 capture methods: membrane separation; the basic chemistry and process for CO2 capture; the development of materials and processes; and practical applications, based on the authors’ R&D experience. This book serves as a valuable reference resource for researchers, teachers and students interested in CO2 problems, providing essential information on how to capture CO2 from various types of gases efficiently. It is also of interest to practitioners and academics, as it discusses the performance of the latest technologies applied in large-scale emission sources.

Carbon Dioxide Chemistry, Capture and Oil Recovery

Carbon Dioxide Chemistry, Capture and Oil Recovery PDF Author: Iyad Karamé
Publisher: BoD – Books on Demand
ISBN: 178923574X
Category : Science
Languages : en
Pages : 268

Book Description
Fossil fuels still need to meet the growing demand of global economic development, yet they are often considered as one of the main sources of the CO2 release in the atmosphere. CO2, which is the primary greenhouse gas (GHG), is periodically exchanged among the land surface, ocean, and atmosphere where various creatures absorb and produce it daily. However, the balanced processes of producing and consuming the CO2 by nature are unfortunately faced by the anthropogenic release of CO2. Decreasing the emissions of these greenhouse gases is becoming more urgent. Therefore, carbon sequestration and storage (CSS) of CO2, its utilization in oil recovery, as well as its conversion into fuels and chemicals emerge as active options and potential strategies to mitigate CO2 emissions and climate change, energy crises, and challenges in the storage of energy.

Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption

Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption PDF Author: Wojciech M. Budzianowski
Publisher: Springer
ISBN: 3319472623
Category : Technology & Engineering
Languages : en
Pages : 282

Book Description
This book reviews and characterises promising single-compound solvents, solvent blends and advanced solvent systems suitable for CO2 capture applications using gas-liquid absorption. Focusing on energy efficient solvents with minimal adverse environmental impact, the contributions included analyse the major technological advantages, as well as research and development challenges of promising solvents and solvent systems in various sustainable CO2 capture applications. It provides a valuable source of information for undergraduate and postgraduate students, as well as for chemical engineers and energy specialists.

Negative Emissions Technologies and Reliable Sequestration

Negative Emissions Technologies and Reliable Sequestration PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309484529
Category : Science
Languages : en
Pages : 511

Book Description
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.

Carbon Capture and Storage

Carbon Capture and Storage PDF Author: Mai Bui
Publisher: Royal Society of Chemistry
ISBN: 1788011457
Category : Political Science
Languages : en
Pages : 596

Book Description
This book will provide the latest global perspective on the role and value of carbon capture and storage (CCS) in delivering temperature targets and reducing the impact of global warming. As well as providing a comprehensive, up-to-date overview of the major sources of carbon dioxide emission and negative emissions technologies, the book also discusses technical, economic and political issues associated with CCS along with strategies to enable commercialisation.

Materials for Carbon Capture

Materials for Carbon Capture PDF Author: De-en Jiang
Publisher: John Wiley & Sons
ISBN: 1119091179
Category : Science
Languages : en
Pages : 397

Book Description
Covers a wide range of advanced materials and technologies for CO2 capture As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. A comprehensive overview and survey of the present status of materials and technologies for carbon capture Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture Allows the reader to better understand the challenges and opportunities in carbon capture Edited by leading experts working on materials and membranes for carbon separation and capture Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.

Electrochemistry in Nonaqueous Solutions

Electrochemistry in Nonaqueous Solutions PDF Author: Kosuke Izutsu
Publisher: John Wiley & Sons
ISBN: 9783527629169
Category : Science
Languages : en
Pages : 432

Book Description
An excellent resource for all graduate students and researchers using electrochemical techniques. After introducing the reader to the fundamentals, the book focuses on the latest developments in the techniques and applications in this field. This second edition contains new material on environmentally-friendly solvents, such as room-temperature ionic liquids.