Author: Marco Abate
Publisher: Springer
ISBN: 354048812X
Category : Mathematics
Languages : en
Pages : 185
Book Description
Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, Kählerianity, geodesics, curvature. Finally global geometry and complex Monge-Ampère equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.
Finsler Metrics - A Global Approach
Author: Marco Abate
Publisher: Springer
ISBN: 354048812X
Category : Mathematics
Languages : en
Pages : 185
Book Description
Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, Kählerianity, geodesics, curvature. Finally global geometry and complex Monge-Ampère equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.
Publisher: Springer
ISBN: 354048812X
Category : Mathematics
Languages : en
Pages : 185
Book Description
Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, Kählerianity, geodesics, curvature. Finally global geometry and complex Monge-Ampère equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.
Finsler Geometry
Author: Xinyue Cheng
Publisher: Springer Science & Business Media
ISBN: 3642248888
Category : Mathematics
Languages : en
Pages : 149
Book Description
"Finsler Geometry: An Approach via Randers Spaces" exclusively deals with a special class of Finsler metrics -- Randers metrics, which are defined as the sum of a Riemannian metric and a 1-form. Randers metrics derive from the research on General Relativity Theory and have been applied in many areas of the natural sciences. They can also be naturally deduced as the solution of the Zermelo navigation problem. The book provides readers not only with essential findings on Randers metrics but also the core ideas and methods which are useful in Finsler geometry. It will be of significant interest to researchers and practitioners working in Finsler geometry, even in differential geometry or related natural fields. Xinyue Cheng is a Professor at the School of Mathematics and Statistics of Chongqing University of Technology, China. Zhongmin Shen is a Professor at the Department of Mathematical Sciences of Indiana University Purdue University, USA.
Publisher: Springer Science & Business Media
ISBN: 3642248888
Category : Mathematics
Languages : en
Pages : 149
Book Description
"Finsler Geometry: An Approach via Randers Spaces" exclusively deals with a special class of Finsler metrics -- Randers metrics, which are defined as the sum of a Riemannian metric and a 1-form. Randers metrics derive from the research on General Relativity Theory and have been applied in many areas of the natural sciences. They can also be naturally deduced as the solution of the Zermelo navigation problem. The book provides readers not only with essential findings on Randers metrics but also the core ideas and methods which are useful in Finsler geometry. It will be of significant interest to researchers and practitioners working in Finsler geometry, even in differential geometry or related natural fields. Xinyue Cheng is a Professor at the School of Mathematics and Statistics of Chongqing University of Technology, China. Zhongmin Shen is a Professor at the Department of Mathematical Sciences of Indiana University Purdue University, USA.
Finsler Geometry
Author: David Dai-Wai Bao
Publisher: American Mathematical Soc.
ISBN: 082180507X
Category : Mathematics
Languages : en
Pages : 338
Book Description
This volume features proceedings from the 1995 Joint Summer Research Conference on Finsler Geometry, chaired by S. S. Chern and co-chaired by D. Bao and Z. Shen. The editors of this volume have provided comprehensive and informative "capsules" of presentations and technical reports. This was facilitated by classifying the papers into the following 6 separate sections - 3 of which are applied and 3 are pure: * Finsler Geometry over the reals * Complex Finsler geometry * Generalized Finsler metrics * Applications to biology, engineering, and physics * Applications to control theory * Applications to relativistic field theory Each section contains a preface that provides a coherent overview of the topic and includes an outline of the current directions of research and new perspectives. A short list of open problems concludes each contributed paper. A number of photos are featured in the volumes, for example, that of Finsler. In addition, conference participants are also highlighted.
Publisher: American Mathematical Soc.
ISBN: 082180507X
Category : Mathematics
Languages : en
Pages : 338
Book Description
This volume features proceedings from the 1995 Joint Summer Research Conference on Finsler Geometry, chaired by S. S. Chern and co-chaired by D. Bao and Z. Shen. The editors of this volume have provided comprehensive and informative "capsules" of presentations and technical reports. This was facilitated by classifying the papers into the following 6 separate sections - 3 of which are applied and 3 are pure: * Finsler Geometry over the reals * Complex Finsler geometry * Generalized Finsler metrics * Applications to biology, engineering, and physics * Applications to control theory * Applications to relativistic field theory Each section contains a preface that provides a coherent overview of the topic and includes an outline of the current directions of research and new perspectives. A short list of open problems concludes each contributed paper. A number of photos are featured in the volumes, for example, that of Finsler. In addition, conference participants are also highlighted.
Comparison Finsler Geometry
Author: Shin-ichi Ohta
Publisher: Springer Nature
ISBN: 3030806502
Category : Mathematics
Languages : en
Pages : 324
Book Description
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
Publisher: Springer Nature
ISBN: 3030806502
Category : Mathematics
Languages : en
Pages : 324
Book Description
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
A Sampler of Riemann-Finsler Geometry
Author: David Dai-Wai Bao
Publisher: Cambridge University Press
ISBN: 9780521831819
Category : Mathematics
Languages : en
Pages : 384
Book Description
These expository accounts treat issues related to volume, geodesics, curvature and mathematical biology, with instructive examples.
Publisher: Cambridge University Press
ISBN: 9780521831819
Category : Mathematics
Languages : en
Pages : 384
Book Description
These expository accounts treat issues related to volume, geodesics, curvature and mathematical biology, with instructive examples.
Complex Spaces in Finsler, Lagrange and Hamilton Geometries
Author: Gheorghe Munteanu
Publisher: Springer Science & Business Media
ISBN: 1402022069
Category : Mathematics
Languages : en
Pages : 237
Book Description
From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970's by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.
Publisher: Springer Science & Business Media
ISBN: 1402022069
Category : Mathematics
Languages : en
Pages : 237
Book Description
From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970's by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.
Lectures on Finsler Geometry
Author: Zhongmin Shen
Publisher: World Scientific
ISBN: 9812811621
Category : Mathematics
Languages : en
Pages : 323
Book Description
In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann''s notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler''s category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world. Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov''s Hausdorff convergence theory. Contents: Finsler Spaces; Finsler m Spaces; Co-Area Formula; Isoperimetric Inequalities; Geodesics and Connection; Riemann Curvature; Non-Riemannian Curvatures; Structure Equations; Finsler Spaces of Constant Curvature; Second Variation Formula; Geodesics and Exponential Map; Conjugate Radius and Injectivity Radius; Basic Comparison Theorems; Geometry of Hypersurfaces; Geometry of Metric Spheres; Volume Comparison Theorems; Morse Theory of Loop Spaces; Vanishing Theorems for Homotopy Groups; Spaces of Finsler Spaces. Readership: Graduate students and researchers in geometry and physics.
Publisher: World Scientific
ISBN: 9812811621
Category : Mathematics
Languages : en
Pages : 323
Book Description
In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann''s notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler''s category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world. Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov''s Hausdorff convergence theory. Contents: Finsler Spaces; Finsler m Spaces; Co-Area Formula; Isoperimetric Inequalities; Geodesics and Connection; Riemann Curvature; Non-Riemannian Curvatures; Structure Equations; Finsler Spaces of Constant Curvature; Second Variation Formula; Geodesics and Exponential Map; Conjugate Radius and Injectivity Radius; Basic Comparison Theorems; Geometry of Hypersurfaces; Geometry of Metric Spheres; Volume Comparison Theorems; Morse Theory of Loop Spaces; Vanishing Theorems for Homotopy Groups; Spaces of Finsler Spaces. Readership: Graduate students and researchers in geometry and physics.
Introduction To Modern Finsler Geometry
Author: Yi-bing Shen
Publisher: World Scientific Publishing Company
ISBN: 981470492X
Category : Mathematics
Languages : en
Pages : 406
Book Description
This comprehensive book is an introduction to the basics of Finsler geometry with recent developments in its area. It includes local geometry as well as global geometry of Finsler manifolds.In Part I, the authors discuss differential manifolds, Finsler metrics, the Chern connection, Riemannian and non-Riemannian quantities. Part II is written for readers who would like to further their studies in Finsler geometry. It covers projective transformations, comparison theorems, fundamental group, minimal immersions, harmonic maps, Einstein metrics, conformal transformations, amongst other related topics. The authors made great efforts to ensure that the contents are accessible to senior undergraduate students, graduate students, mathematicians and scientists.
Publisher: World Scientific Publishing Company
ISBN: 981470492X
Category : Mathematics
Languages : en
Pages : 406
Book Description
This comprehensive book is an introduction to the basics of Finsler geometry with recent developments in its area. It includes local geometry as well as global geometry of Finsler manifolds.In Part I, the authors discuss differential manifolds, Finsler metrics, the Chern connection, Riemannian and non-Riemannian quantities. Part II is written for readers who would like to further their studies in Finsler geometry. It covers projective transformations, comparison theorems, fundamental group, minimal immersions, harmonic maps, Einstein metrics, conformal transformations, amongst other related topics. The authors made great efforts to ensure that the contents are accessible to senior undergraduate students, graduate students, mathematicians and scientists.
Handbook of Finsler geometry. 1 (2003)
Author: Peter L. Antonelli
Publisher: Springer Science & Business Media
ISBN: 9781402015557
Category : Mathematics
Languages : en
Pages : 760
Book Description
There are several mathematical approaches to Finsler Geometry, all of which are contained and expounded in this comprehensive Handbook. The principal bundles pathway to state-of-the-art Finsler Theory is here provided by M. Matsumoto. His is a cornerstone for this set of essays, as are the articles of R. Miron (Lagrange Geometry) and J. Szilasi (Spray and Finsler Geometry). After studying either one of these, the reader will be able to understand the included survey articles on complex manifolds, holonomy, sprays and KCC-theory, symplectic structures, Legendre duality, Hodge theory and Gauss-Bonnet formulas. Finslerian diffusion theory is presented by its founders, P. Antonelli and T. Zastawniak. To help with calculations and conceptualizations, a CD-ROM containing the software package FINSLER, based on MAPLE, is included with the book.
Publisher: Springer Science & Business Media
ISBN: 9781402015557
Category : Mathematics
Languages : en
Pages : 760
Book Description
There are several mathematical approaches to Finsler Geometry, all of which are contained and expounded in this comprehensive Handbook. The principal bundles pathway to state-of-the-art Finsler Theory is here provided by M. Matsumoto. His is a cornerstone for this set of essays, as are the articles of R. Miron (Lagrange Geometry) and J. Szilasi (Spray and Finsler Geometry). After studying either one of these, the reader will be able to understand the included survey articles on complex manifolds, holonomy, sprays and KCC-theory, symplectic structures, Legendre duality, Hodge theory and Gauss-Bonnet formulas. Finslerian diffusion theory is presented by its founders, P. Antonelli and T. Zastawniak. To help with calculations and conceptualizations, a CD-ROM containing the software package FINSLER, based on MAPLE, is included with the book.
Finslerian Geometries
Author: P.L. Antonelli
Publisher: Springer Science & Business Media
ISBN: 9401142351
Category : Mathematics
Languages : en
Pages : 305
Book Description
The International Conference on Finsler and Lagrange Geometry and its Applications: A Meeting of Minds, took place August 13-20, 1998 at the University of Alberta in Edmonton, Canada. The main objective of this meeting was to help acquaint North American geometers with the extensive modern literature on Finsler geometry and Lagrange geometry of the Japanese and European schools, each with its own venerable history, on the one hand, and to communicate recent advances in stochastic theory and Hodge theory for Finsler manifolds by the younger North American school, on the other. The intent was to bring together practitioners of these schools of thought in a Canadian venue where there would be ample opportunity to exchange information and have cordial personal interactions. The present set of refereed papers begins ·with the Pedagogical Sec tion I, where introductory and brief survey articles are presented, one from the Japanese School and two from the European School (Romania and Hungary). These have been prepared for non-experts with the intent of explaining basic points of view. The Section III is the main body of work. It is arranged in alphabetical order, by author. Section II gives a brief account of each of these contribu tions with a short reference list at the end. More extensive references are given in the individual articles.
Publisher: Springer Science & Business Media
ISBN: 9401142351
Category : Mathematics
Languages : en
Pages : 305
Book Description
The International Conference on Finsler and Lagrange Geometry and its Applications: A Meeting of Minds, took place August 13-20, 1998 at the University of Alberta in Edmonton, Canada. The main objective of this meeting was to help acquaint North American geometers with the extensive modern literature on Finsler geometry and Lagrange geometry of the Japanese and European schools, each with its own venerable history, on the one hand, and to communicate recent advances in stochastic theory and Hodge theory for Finsler manifolds by the younger North American school, on the other. The intent was to bring together practitioners of these schools of thought in a Canadian venue where there would be ample opportunity to exchange information and have cordial personal interactions. The present set of refereed papers begins ·with the Pedagogical Sec tion I, where introductory and brief survey articles are presented, one from the Japanese School and two from the European School (Romania and Hungary). These have been prepared for non-experts with the intent of explaining basic points of view. The Section III is the main body of work. It is arranged in alphabetical order, by author. Section II gives a brief account of each of these contribu tions with a short reference list at the end. More extensive references are given in the individual articles.