Author: Heinz-Dieter Ebbinghaus
Publisher: Springer Science & Business Media
ISBN: 3540287884
Category : Mathematics
Languages : en
Pages : 363
Book Description
This is a thoroughly revised and enlarged second edition that presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed-point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. The book is written in such a way that the respective parts on model theory and descriptive complexity theory may be read independently.
Finite Model Theory
Author: Heinz-Dieter Ebbinghaus
Publisher: Springer Science & Business Media
ISBN: 3540287884
Category : Mathematics
Languages : en
Pages : 363
Book Description
This is a thoroughly revised and enlarged second edition that presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed-point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. The book is written in such a way that the respective parts on model theory and descriptive complexity theory may be read independently.
Publisher: Springer Science & Business Media
ISBN: 3540287884
Category : Mathematics
Languages : en
Pages : 363
Book Description
This is a thoroughly revised and enlarged second edition that presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed-point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. The book is written in such a way that the respective parts on model theory and descriptive complexity theory may be read independently.
Elements of Finite Model Theory
Author: Leonid Libkin
Publisher: Springer Science & Business Media
ISBN: 3662070030
Category : Mathematics
Languages : en
Pages : 320
Book Description
Emphasizes the computer science aspects of the subject. Details applications in databases, complexity theory, and formal languages, as well as other branches of computer science.
Publisher: Springer Science & Business Media
ISBN: 3662070030
Category : Mathematics
Languages : en
Pages : 320
Book Description
Emphasizes the computer science aspects of the subject. Details applications in databases, complexity theory, and formal languages, as well as other branches of computer science.
Finite Model Theory and Its Applications
Author: Erich Grädel
Publisher: Springer Science & Business Media
ISBN: 3540688048
Category : Computers
Languages : en
Pages : 447
Book Description
Finite model theory,as understoodhere, is an areaof mathematicallogic that has developed in close connection with applications to computer science, in particular the theory of computational complexity and database theory. One of the fundamental insights of mathematical logic is that our understanding of mathematical phenomena is enriched by elevating the languages we use to describe mathematical structures to objects of explicit study. If mathematics is the science of patterns, then the media through which we discern patterns, as well as the structures in which we discern them, command our attention. It isthis aspect oflogicwhichis mostprominentin model theory,“thebranchof mathematical logic which deals with the relation between a formal language and its interpretations”. No wonder, then, that mathematical logic, and ?nite model theory in particular, should ?nd manifold applications in computer science: from specifying programs to querying databases, computer science is rife with phenomena whose understanding requires close attention to the interaction between language and structure. This volume gives a broadoverviewof some central themes of ?nite model theory: expressive power, descriptive complexity, and zero–one laws, together with selected applications to database theory and arti?cial intelligence, es- cially constraint databases and constraint satisfaction problems. The ?nal chapter provides a concise modern introduction to modal logic,which emp- sizes the continuity in spirit and technique with ?nite model theory.
Publisher: Springer Science & Business Media
ISBN: 3540688048
Category : Computers
Languages : en
Pages : 447
Book Description
Finite model theory,as understoodhere, is an areaof mathematicallogic that has developed in close connection with applications to computer science, in particular the theory of computational complexity and database theory. One of the fundamental insights of mathematical logic is that our understanding of mathematical phenomena is enriched by elevating the languages we use to describe mathematical structures to objects of explicit study. If mathematics is the science of patterns, then the media through which we discern patterns, as well as the structures in which we discern them, command our attention. It isthis aspect oflogicwhichis mostprominentin model theory,“thebranchof mathematical logic which deals with the relation between a formal language and its interpretations”. No wonder, then, that mathematical logic, and ?nite model theory in particular, should ?nd manifold applications in computer science: from specifying programs to querying databases, computer science is rife with phenomena whose understanding requires close attention to the interaction between language and structure. This volume gives a broadoverviewof some central themes of ?nite model theory: expressive power, descriptive complexity, and zero–one laws, together with selected applications to database theory and arti?cial intelligence, es- cially constraint databases and constraint satisfaction problems. The ?nal chapter provides a concise modern introduction to modal logic,which emp- sizes the continuity in spirit and technique with ?nite model theory.
Finite Structures with Few Types
Author: Gregory L. Cherlin
Publisher: Princeton University Press
ISBN: 9780691113319
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book applies model theoretic methods to the study of certain finite permutation groups, the automorphism groups of structures for a fixed finite language with a bounded number of orbits on 4-tuples. Primitive permutation groups of this type have been classified by Kantor, Liebeck, and Macpherson, using the classification of the finite simple groups. Building on this work, Gregory Cherlin and Ehud Hrushovski here treat the general case by developing analogs of the model theoretic methods of geometric stability theory. The work lies at the juncture of permutation group theory, model theory, classical geometries, and combinatorics. The principal results are finite theorems, an associated analysis of computational issues, and an "intrinsic" characterization of the permutation groups (or finite structures) under consideration. The main finiteness theorem shows that the structures under consideration fall naturally into finitely many families, with each family parametrized by finitely many numerical invariants (dimensions of associated coordinating geometries). The authors provide a case study in the extension of methods of stable model theory to a nonstable context, related to work on Shelah's "simple theories." They also generalize Lachlan's results on stable homogeneous structures for finite relational languages, solving problems of effectivity left open by that case. Their methods involve the analysis of groups interpretable in these structures, an analog of Zilber's envelopes, and the combinatorics of the underlying geometries. Taking geometric stability theory into new territory, this book is for mathematicians interested in model theory and group theory.
Publisher: Princeton University Press
ISBN: 9780691113319
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book applies model theoretic methods to the study of certain finite permutation groups, the automorphism groups of structures for a fixed finite language with a bounded number of orbits on 4-tuples. Primitive permutation groups of this type have been classified by Kantor, Liebeck, and Macpherson, using the classification of the finite simple groups. Building on this work, Gregory Cherlin and Ehud Hrushovski here treat the general case by developing analogs of the model theoretic methods of geometric stability theory. The work lies at the juncture of permutation group theory, model theory, classical geometries, and combinatorics. The principal results are finite theorems, an associated analysis of computational issues, and an "intrinsic" characterization of the permutation groups (or finite structures) under consideration. The main finiteness theorem shows that the structures under consideration fall naturally into finitely many families, with each family parametrized by finitely many numerical invariants (dimensions of associated coordinating geometries). The authors provide a case study in the extension of methods of stable model theory to a nonstable context, related to work on Shelah's "simple theories." They also generalize Lachlan's results on stable homogeneous structures for finite relational languages, solving problems of effectivity left open by that case. Their methods involve the analysis of groups interpretable in these structures, an analog of Zilber's envelopes, and the combinatorics of the underlying geometries. Taking geometric stability theory into new territory, this book is for mathematicians interested in model theory and group theory.
A Shorter Model Theory
Author: Wilfrid Hodges
Publisher: Cambridge University Press
ISBN: 9780521587136
Category : Mathematics
Languages : en
Pages : 322
Book Description
This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.
Publisher: Cambridge University Press
ISBN: 9780521587136
Category : Mathematics
Languages : en
Pages : 322
Book Description
This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.
Theory and Practice of Finite Elements
Author: Alexandre Ern
Publisher: Springer Science & Business Media
ISBN: 1475743556
Category : Mathematics
Languages : en
Pages : 531
Book Description
This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.
Publisher: Springer Science & Business Media
ISBN: 1475743556
Category : Mathematics
Languages : en
Pages : 531
Book Description
This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.
Model Theory
Author: Wilfrid Hodges
Publisher: Cambridge University Press
ISBN: 9780521304429
Category : Mathematics
Languages : en
Pages : 810
Book Description
Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.
Publisher: Cambridge University Press
ISBN: 9780521304429
Category : Mathematics
Languages : en
Pages : 810
Book Description
Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.
Model Theory : An Introduction
Author: David Marker
Publisher: Springer Science & Business Media
ISBN: 0387227342
Category : Mathematics
Languages : en
Pages : 342
Book Description
Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
Publisher: Springer Science & Business Media
ISBN: 0387227342
Category : Mathematics
Languages : en
Pages : 342
Book Description
Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
A Course in Model Theory
Author: Katrin Tent
Publisher: Cambridge University Press
ISBN: 052176324X
Category : Mathematics
Languages : en
Pages : 259
Book Description
Concise introduction to current topics in model theory, including simple and stable theories.
Publisher: Cambridge University Press
ISBN: 052176324X
Category : Mathematics
Languages : en
Pages : 259
Book Description
Concise introduction to current topics in model theory, including simple and stable theories.
Finite and Algorithmic Model Theory
Author: Javier Esparza
Publisher: Cambridge University Press
ISBN: 0521718201
Category : Computers
Languages : en
Pages : 355
Book Description
Surveys of current research in logical aspects of computer science that apply finite and infinite model-theoretic methods.
Publisher: Cambridge University Press
ISBN: 0521718201
Category : Computers
Languages : en
Pages : 355
Book Description
Surveys of current research in logical aspects of computer science that apply finite and infinite model-theoretic methods.