Author: David J. Steigmann
Publisher: Oxford University Press
ISBN: 0192528076
Category : Mathematics
Languages : en
Pages : 175
Book Description
Containing case studies and examples, the book aims to cover extensive research particularly on surface stress and topics related to the variational approach to the subject, and non-standard topics such as the rigorous treatment of constraints and a full discussion of algebraic inequalities associated with realistic material behaviour, and their implications. Serving as an introduction to the basic elements of Finite Elasticity, this textbook is the cornerstone for any graduate-level on the topic, while also providing a template for a host of theories in Solid Mechanics.
Finite Elasticity Theory
Author: David J. Steigmann
Publisher: Oxford University Press
ISBN: 0192528076
Category : Mathematics
Languages : en
Pages : 175
Book Description
Containing case studies and examples, the book aims to cover extensive research particularly on surface stress and topics related to the variational approach to the subject, and non-standard topics such as the rigorous treatment of constraints and a full discussion of algebraic inequalities associated with realistic material behaviour, and their implications. Serving as an introduction to the basic elements of Finite Elasticity, this textbook is the cornerstone for any graduate-level on the topic, while also providing a template for a host of theories in Solid Mechanics.
Publisher: Oxford University Press
ISBN: 0192528076
Category : Mathematics
Languages : en
Pages : 175
Book Description
Containing case studies and examples, the book aims to cover extensive research particularly on surface stress and topics related to the variational approach to the subject, and non-standard topics such as the rigorous treatment of constraints and a full discussion of algebraic inequalities associated with realistic material behaviour, and their implications. Serving as an introduction to the basic elements of Finite Elasticity, this textbook is the cornerstone for any graduate-level on the topic, while also providing a template for a host of theories in Solid Mechanics.
An Introduction to the Theory of Elasticity
Author: R. J. Atkin
Publisher: Courier Corporation
ISBN: 0486150992
Category : Science
Languages : en
Pages : 272
Book Description
Accessible text covers deformation and stress, derivation of equations of finite elasticity, and formulation of infinitesimal elasticity with application to two- and three-dimensional static problems and elastic waves. 1980 edition.
Publisher: Courier Corporation
ISBN: 0486150992
Category : Science
Languages : en
Pages : 272
Book Description
Accessible text covers deformation and stress, derivation of equations of finite elasticity, and formulation of infinitesimal elasticity with application to two- and three-dimensional static problems and elastic waves. 1980 edition.
Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity
Author: Koichi Hashiguchi
Publisher: Elsevier
ISBN: 0128194294
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity empowers readers to fully understand the constitutive equation of finite strain, an essential piece in assessing the deformation/strength of materials and safety of structures. The book starts by providing a foundational overview of continuum mechanics, elasticity and plasticity, then segues into more sophisticated topics such as multiplicative decomposition of deformation gradient tensor with the isoclinic concept and the underlying subloading surface concept. The subloading surface concept insists that the plastic strain rate is not induced suddenly at the moment when the stress reaches the yield surface but it develops continuously as the stress approaches the yield surface, which is crucially important for the precise description of cyclic loading behavior. Then, the exact formulations of the elastoplastic and viscoplastic constitutive equations based on the multiplicative decomposition are expounded in great detail. The book concludes with examples of these concepts and modeling techniques being deployed in real-world applications. Table of Contents: 1. Mathematical Basics 2. General (Curvilinear) Coordinate System 3. Description of Deformation/Rotation in Convected Coordinate System 4. Deformation/Rotation (Rate) Tensors 5. Conservation Laws and Stress Tensors 6. Hyperelastic Equations 7. Development of Elastoplastic Constitutive Equations 8. Multiplicative Decomposition of Deformation Gradient Tensor 9. Multiplicative Hyperelastic-based Plastic and Viscoplastic Constitutive Equations 10. Friction Model: Finite Sliding Theory - Covers both the fundamentals of continuum mechanics and elastoplasticity while also introducing readers to more advanced topics such as the subloading surface model and the multiplicative decomposition among others - Approaches finite elastoplasticity and viscoplasticty theory based on multiplicative decomposition and the subloading surface model - Provides a thorough introduction to the general tensor formulation details for the embedded curvilinear coordinate system and the multiplicative decomposition of the deformation gradient
Publisher: Elsevier
ISBN: 0128194294
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity empowers readers to fully understand the constitutive equation of finite strain, an essential piece in assessing the deformation/strength of materials and safety of structures. The book starts by providing a foundational overview of continuum mechanics, elasticity and plasticity, then segues into more sophisticated topics such as multiplicative decomposition of deformation gradient tensor with the isoclinic concept and the underlying subloading surface concept. The subloading surface concept insists that the plastic strain rate is not induced suddenly at the moment when the stress reaches the yield surface but it develops continuously as the stress approaches the yield surface, which is crucially important for the precise description of cyclic loading behavior. Then, the exact formulations of the elastoplastic and viscoplastic constitutive equations based on the multiplicative decomposition are expounded in great detail. The book concludes with examples of these concepts and modeling techniques being deployed in real-world applications. Table of Contents: 1. Mathematical Basics 2. General (Curvilinear) Coordinate System 3. Description of Deformation/Rotation in Convected Coordinate System 4. Deformation/Rotation (Rate) Tensors 5. Conservation Laws and Stress Tensors 6. Hyperelastic Equations 7. Development of Elastoplastic Constitutive Equations 8. Multiplicative Decomposition of Deformation Gradient Tensor 9. Multiplicative Hyperelastic-based Plastic and Viscoplastic Constitutive Equations 10. Friction Model: Finite Sliding Theory - Covers both the fundamentals of continuum mechanics and elastoplasticity while also introducing readers to more advanced topics such as the subloading surface model and the multiplicative decomposition among others - Approaches finite elastoplasticity and viscoplasticty theory based on multiplicative decomposition and the subloading surface model - Provides a thorough introduction to the general tensor formulation details for the embedded curvilinear coordinate system and the multiplicative decomposition of the deformation gradient
Nonlinear Elasticity
Author: Y. B. Fu
Publisher: Cambridge University Press
ISBN: 0521796954
Category : Mathematics
Languages : en
Pages : 541
Book Description
Comprehensive introduction to nonlinear elasticity for graduates and researchers, covering new developments in the field.
Publisher: Cambridge University Press
ISBN: 0521796954
Category : Mathematics
Languages : en
Pages : 541
Book Description
Comprehensive introduction to nonlinear elasticity for graduates and researchers, covering new developments in the field.
Boundary Value Problems of Finite Elasticity
Author: Tullio Valent
Publisher: Springer Science & Business Media
ISBN: 146123736X
Category : Science
Languages : en
Pages : 201
Book Description
In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b], in order to obtain local existence and uniqueness for the traction problem in hyperelasticity under dead loads, inspired many of the ideas which led to this monograph. Chapter I aims to give a very brief introduction to some general concepts in the mathematical theory of elasticity, in order to show how the boundary value problems studied in the sequel arise. Chapter II is very technical; it supplies the framework for all sub sequent developments.
Publisher: Springer Science & Business Media
ISBN: 146123736X
Category : Science
Languages : en
Pages : 201
Book Description
In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b], in order to obtain local existence and uniqueness for the traction problem in hyperelasticity under dead loads, inspired many of the ideas which led to this monograph. Chapter I aims to give a very brief introduction to some general concepts in the mathematical theory of elasticity, in order to show how the boundary value problems studied in the sequel arise. Chapter II is very technical; it supplies the framework for all sub sequent developments.
Computational Elasticity
Author: Mohammed Ameen
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842652015
Category : Boundary element methods
Languages : en
Pages : 540
Book Description
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842652015
Category : Boundary element methods
Languages : en
Pages : 540
Book Description
Hyperelasticity Primer
Author: Robert M. Hackett
Publisher: Springer
ISBN: 3319232738
Category : Science
Languages : en
Pages : 182
Book Description
This book introduces the subject of hyperelasticity in a concise manner mainly directed to students of solid mechanics who have a familiarity with continuum mechanics. It focuses on important introductory topics in the field of nonlinear material behavior and presents a number of example problems and solutions to greatly aid the student in mastering the difficulty of the subject and gaining necessary insight. Professor Hackett delineates the concepts and applications of hyperelasticity in such a way that a new student of the subject can absorb the intricate details without having to wade through excessively complicated formulations. The book further presents significant review material on intricately related subjects such as tensor calculus and introduces some new formulations.
Publisher: Springer
ISBN: 3319232738
Category : Science
Languages : en
Pages : 182
Book Description
This book introduces the subject of hyperelasticity in a concise manner mainly directed to students of solid mechanics who have a familiarity with continuum mechanics. It focuses on important introductory topics in the field of nonlinear material behavior and presents a number of example problems and solutions to greatly aid the student in mastering the difficulty of the subject and gaining necessary insight. Professor Hackett delineates the concepts and applications of hyperelasticity in such a way that a new student of the subject can absorb the intricate details without having to wade through excessively complicated formulations. The book further presents significant review material on intricately related subjects such as tensor calculus and introduces some new formulations.
Collected Papers of R.S. Rivlin
Author: Grigory I. Barenblatt
Publisher: Springer Science & Business Media
ISBN: 1461224160
Category : Technology & Engineering
Languages : en
Pages : 2868
Book Description
R.S. Rivlin is one of the principal architects of nonlinear continuum mechanics: His work on the mechanics of rubber (in the 1940s and 50s) established the basis of finite elasticity theory. These volumes make most of his scientific papers available again and show the full scope and significance of his contributions.
Publisher: Springer Science & Business Media
ISBN: 1461224160
Category : Technology & Engineering
Languages : en
Pages : 2868
Book Description
R.S. Rivlin is one of the principal architects of nonlinear continuum mechanics: His work on the mechanics of rubber (in the 1940s and 50s) established the basis of finite elasticity theory. These volumes make most of his scientific papers available again and show the full scope and significance of his contributions.
Theory of Elasticity and Thermal Stresses
Author: M. Reza Eslami
Publisher: Springer Science & Business Media
ISBN: 9400763565
Category : Science
Languages : en
Pages : 787
Book Description
This book contains the elements of the theory and the problems of Elasticity and Thermal Stresses with full solutions. The emphasis is placed on problems and solutions and the book consists of four parts: one part is on The Mathematical Theory of Elasticity, two parts are on Thermal Stresses and one part is on Numerical Methods. The book is addressed to higher level undergraduate students, graduate students and engineers and it is an indispensable companion to all who study any of the books published earlier by the authors. This book links the three previously published books by the authors into one comprehensive entity.
Publisher: Springer Science & Business Media
ISBN: 9400763565
Category : Science
Languages : en
Pages : 787
Book Description
This book contains the elements of the theory and the problems of Elasticity and Thermal Stresses with full solutions. The emphasis is placed on problems and solutions and the book consists of four parts: one part is on The Mathematical Theory of Elasticity, two parts are on Thermal Stresses and one part is on Numerical Methods. The book is addressed to higher level undergraduate students, graduate students and engineers and it is an indispensable companion to all who study any of the books published earlier by the authors. This book links the three previously published books by the authors into one comprehensive entity.
Constitutive Modelling of Solid Continua
Author: José Merodio
Publisher: Springer Nature
ISBN: 3030315479
Category : Science
Languages : en
Pages : 397
Book Description
This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.
Publisher: Springer Nature
ISBN: 3030315479
Category : Science
Languages : en
Pages : 397
Book Description
This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.